J. Mater. Sci. Technol. ›› 2022, Vol. 100: 20-26.DOI: 10.1016/j.jmst.2021.04.068
• Research Article • Previous Articles Next Articles
Zhen Jianga, Ran Weia,*(
), Wenzhou Wangb, Mengjia Lia, Zhenhua Hanc, Shuhan Yuana, Kaisheng Zhanga, Chen Chena, Tan Wanga, Fushan Lia,*(
)
Received:2021-02-09
Revised:2021-04-17
Accepted:2021-04-24
Published:2022-02-20
Online:2022-02-15
Contact:
Ran Wei,Fushan Li
About author:fsli@zzu.edu.cn (F. Li).Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying[J]. J. Mater. Sci. Technol., 2022, 100: 20-26.
Fig. 1. (a) XRD patterns from the (Fe50Mn25Ni10Cr15)100-xAlx samples, indicating a phase transition from FCC to BCC structure, and (b) the corresponding lattice constant of FCC and BCC structure.
| Phase | Al5 | Al5 after fracture at 77 K | Al7 | Al7 after fracture at 77 K |
|---|---|---|---|---|
| FCC | 91.6% | 92% | 80% | 79.8% |
| BCC | 8.4% | 8% | 20% | 20.2% |
Table 1 The volume fraction of FCC and BCC phase in Al5 and Al7 MEA calculated by XRD.
| Phase | Al5 | Al5 after fracture at 77 K | Al7 | Al7 after fracture at 77 K |
|---|---|---|---|---|
| FCC | 91.6% | 92% | 80% | 79.8% |
| BCC | 8.4% | 8% | 20% | 20.2% |
Fig. 3. (a) Typical tensile engineering stress-strain curves for (Fe50Mn25Ni10Cr15)100-xAlx alloys at 298 K and 77 K, and (b) strain hardening rate-true strain curves for Al5 and Al7 MEAs. (c) Comparison of the UTS versus ductility at 77 K obtained in this work with other selected alloys [12, [21], [22], [23], [31], [32], [33]]. (d) Lower raw material price of both studied Al5 and Al7 MEAs together with other alloys.
| Sample | YS (MPa) | UTS (MPa) | Ductility (%) | UTS × ductility (GPa %) | |
|---|---|---|---|---|---|
| Al0 | 298 K | 257 | 492 | 47 | 23 |
| 77 K | 460 | 936 | 89 | 83 | |
| Al3 | 298 K | 356 | 603 | 53 | 32 |
| 77 K | 557 | 1014 | 87 | 88 | |
| Al5 | 298 K | 396 | 653 | 50 | 33 |
| 77 K | 560 | 1077 | 85 | 92 | |
| Al6 | 298 K | 480 | 724 | 40 | 29 |
| 77 K | 719 | 1092 | 58 | 63 | |
| Al7 | 298 K | 680 | 852 | 32 | 27 |
| 77 K | 860 | 1134 | 23 | 26 | |
Table 2 Yield strength (YS), ultimate tensile strength (UTS), ductility and UTS × ductility of the (Fe50Mn25Ni10Cr15)100-xAlx alloys.
| Sample | YS (MPa) | UTS (MPa) | Ductility (%) | UTS × ductility (GPa %) | |
|---|---|---|---|---|---|
| Al0 | 298 K | 257 | 492 | 47 | 23 |
| 77 K | 460 | 936 | 89 | 83 | |
| Al3 | 298 K | 356 | 603 | 53 | 32 |
| 77 K | 557 | 1014 | 87 | 88 | |
| Al5 | 298 K | 396 | 653 | 50 | 33 |
| 77 K | 560 | 1077 | 85 | 92 | |
| Al6 | 298 K | 480 | 724 | 40 | 29 |
| 77 K | 719 | 1092 | 58 | 63 | |
| Al7 | 298 K | 680 | 852 | 32 | 27 |
| 77 K | 860 | 1134 | 23 | 26 | |
| [1] |
Y. Lu, Y. Dong, H. Jiang, Z. Wang, Z. Cao, S. Guo, T. Wang, T. Li, P.K. Liaw, Scr. Mater. 187 (2020) 202-209.
DOI URL |
| [2] |
Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Prog. Mater. Sci. 102 (2019) 296-345.
DOI URL |
| [3] |
P. Sathiyamoorthi, H.S. Kim, Prog. Mater. Sci. (2020), doi: 10.1016/j.pmatsci.2020.100709.
DOI |
| [4] |
J.W. Bae, J. Lee, A. Zargaran, H.S. Kim, Scr. Mater. 194 (2021) 113653.
DOI URL |
| [5] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
| [6] |
R. Wei, K. Zhang, L. Chen, Z. Han, C. Chen, T. Wang, J. Jiang, T. Hu, S. Guan, F. Li, J. Mater. Sci. Technol. 51 (2020) 167-172.
DOI URL |
| [7] |
J. Liu, X. Guo, Q. Lin, Z. He, X. An, L. Li, P.K. Liaw, X. Liao, L. Yu, J. Lin, L. Xie, J. Ren, Y. Zhang, Sci. China Mater. 62 (2018) 853-863.
DOI URL |
| [8] |
Z. Han, W. Ren, J. Yang, Y. Du, R. Wei, C. Zhang, Y. Chen, G. Zhang, J. Alloys Compd. 791 (2019) 962-970.
DOI URL |
| [9] |
W. Fu, W. Zheng, Y. Huang, F. Guo, S. Jiang, P. Xue, Y. Ren, H. Fan, Z. Ning, J. Sun, Mater. Sci. Eng. A 789 (2020) 139579.
DOI URL |
| [10] |
W. Fu, K. Gan, Y. Huang, Z. Ning, J. Sun, F. Cao, J. Alloys Compd. 872 (2021) 159606.
DOI URL |
| [11] |
L. Chen, T. Cao, R. Wei, K. Tang, C. Xin, F. Jiang, J. Sun, Mater. Sci. Eng. A 772 (2020) 138661.
DOI URL |
| [12] |
M.V. Klimova, A.O. Semenyuk, D.G. Shaysultanov, G.A. Salishchev, S.V. Zherebtsov, N.D. Stepanov, J. Alloys Compd. 811 (2019) 152000.
DOI URL |
| [13] |
H. Yang, J. Li, X. Pan, W.Y. Wang, H. Kou, J. Wang, J. Mater. Sci. Technol. 72 (2021) 1-7.
DOI URL |
| [14] |
Z. Wang, I. Baker, Z. Cai, S. Chen, J.D. Poplawsky, W. Guo, Acta Mater 120 (2016) 228-239.
DOI URL |
| [15] |
Z.H. Han, S. Liang, J. Yang, R. Wei, C.J. Zhang, Mater. Charact. 145 (2018) 619-626.
DOI URL |
| [16] |
S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, Z.F. Zhang, Mater. Sci. Eng. A 740-741 (2019) 336-341.
DOI URL |
| [17] |
J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater 62 (2014) 105-113.
DOI URL |
| [18] | W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Prog. Mater. Sci. (2021) 100777. |
| [19] |
R. Wei, H. Sun, Z.H. Han, C. Chen, T. Wang, S.K. Guan, F.S. Li, Mater. Lett. 219 (2018) 85-88.
DOI URL |
| [20] |
L.B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He, J. Sun, Mater. Sci. Eng. A 716 (2018) 150-156.
DOI URL |
| [21] |
Q. Li, T.W. Zhang, J.W. Qiao, S.G. Ma, D. Zhao, P. Lu, Z.H. Wang, J. Alloys Compd. 816 (2020) 152663.
DOI URL |
| [22] |
J.M. Park, J. Moon, J.W. Bae, D.H. Kim, Y.H. Jo, S. Lee, H.S. Kim, Mater. Sci. Eng. A 746 (2019) 443-447.
DOI URL |
| [23] |
R. Wei, K. Zhang, L. Chen, Z. Han, T. Wang, C. Chen, J. Jiang, T. Hu, F. Li, J. Mater. Sci. Technol. 57 (2020) 153-158.
DOI URL |
| [24] |
B.B. Bian, N. Guo, H.J. Yang, R.P. Guo, L. Yang, Y.C. Wu, J.W. Qiao, J. Alloys Compd. 827 (2020) 153981.
DOI URL |
| [25] |
N.D. Stepanov, D.G. Shaysultanov, R.S. Chernichenko, M.A. Tikhonovsky, S.V. Zherebtsov, J. Alloys Compd. 770 (2019) 194-203.
DOI URL |
| [26] |
Z. Wang, H. Bei, I. Baker, Mater. Charact. 139 (2018) 373-381.
DOI URL |
| [27] |
S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109(2011) 103505.
DOI URL |
| [28] |
Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Acta Mater. 94(2015) 124-133.
DOI URL |
| [29] |
M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527 (2010) 2738-2746.
DOI URL |
| [30] |
Y. Zhu, K. Ameyama, P.M. Anderson, I.J. Beyerlein, H. Gao, H.S. Kim, E. Lavernia, S. Mathaudhu, H. Mughrabi, R.O. Ritchie, N. Tsuji, X. Zhang, X. Wu, Mater. Res. Lett. 9 (2020) 1-31.
DOI URL |
| [31] |
H.Y. Diao, R. Feng, K.A. Dahmen, P.K. Liaw, Curr. Opin. Solid State Mater. 21 (2017) 252-266.
DOI URL |
| [32] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
| [33] |
J.W. Bae, J.B. Seol, J. Moon, S.S. Sohn, M.J. Jang, H.Y. Um, B.J. Lee, H.S. Kim, Acta Mater 161 (2018) 388-399.
DOI URL |
| [34] |
Y.H. Jo, J. Yang, W.M. Choi, K.Y. Doh, D. Lee, H.S. Kim, B.J. Lee, S.S. Sohn, S. Lee, J. Mater. Sci. Technol. 76 (2021) 222-230.
DOI URL |
| [35] |
P. Sathiyamoorthi, P. Asghari-Rad, J.M. Park, J. Moon, J.W. Bae, A. Zargaran, H.S. Kim, Mater. Sci. Eng. A 766 (2019) 138372.
DOI URL |
| [36] | W. Song, T. Ingendahl, W. Bleck, Acta Metall. Sin. Engl. Lett. 27 (2014) 546-556. |
| [1] | Ao Fu, Bin Liu, Zezhou Li, Bingfeng Wang, Yuankui Cao, Yong Liu. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 120-128. |
| [2] | Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 150-160. |
| [3] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
| [4] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
| [5] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
| [6] | Young-Kyun Kim, Kee-Ahn Lee. Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 97(0): 264-271. |
| [7] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
| [8] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
| [9] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
| [10] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
| [11] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
| [12] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
| [13] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
| [14] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
| [15] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
