J. Mater. Sci. Technol. ›› 2022, Vol. 100: 27-35.DOI: 10.1016/j.jmst.2021.06.006
• Research Article • Previous Articles Next Articles
Weicheng Chen, Xianghui Liang, Wanhui Han, Shuangfeng Wang, Xuenong Gao, Zhengguo Zhang, Yutang Fang*(
)
Received:2021-01-16
Revised:2021-05-15
Accepted:2021-06-12
Published:2022-02-20
Online:2022-02-15
Contact:
Yutang Fang
About author:*E-mail address: ppytfang@scut.edu.cn (Y. Fang).Weicheng Chen, Xianghui Liang, Wanhui Han, Shuangfeng Wang, Xuenong Gao, Zhengguo Zhang, Yutang Fang. 3D shape-stable temperature-regulated macro-encapsulated phase change material: KAl(SO4)2•12H2O-C2H2O4•2H2O-CO(NH2)2 eutectic/polyurethane foam as core and carbon modified silicone resin as shell[J]. J. Mater. Sci. Technol., 2022, 100: 27-35.
Fig. 1. Production flow schematic diagram of PCM@PUF@CMS (a); photographs of PUF (b), PCM@PUF (c) and PCM@PUF@CMS (d); schematic diagram of step cooling experiment set-up (e).
| Parameter | Evaluation method | Uncertainty |
|---|---|---|
| Geometry dimension | Type A | ±0.064 mm |
| Mass measured by electronic balance | Type B | ±0.058 mg |
| Thermal conductivity measured by Hot Disk TPS2500 | Type B | ±1.7% |
| Thermal properties measured by DSC Q20 | Type B | ±0.58% |
| Temperature measured by thermocouple | Type B | ±0.058°C |
Table 1 Uncertainty analysis of the experimental parameters.
| Parameter | Evaluation method | Uncertainty |
|---|---|---|
| Geometry dimension | Type A | ±0.064 mm |
| Mass measured by electronic balance | Type B | ±0.058 mg |
| Thermal conductivity measured by Hot Disk TPS2500 | Type B | ±1.7% |
| Thermal properties measured by DSC Q20 | Type B | ±0.58% |
| Temperature measured by thermocouple | Type B | ±0.058°C |
Fig. 2. DSC curves of binary eutectics at different mass proportions of OAD (a); DSC curves of 75%APSD-25% OAD-Urea eutectics PCM with different contents of Urea (b); Step-cooling curves of APSD-OAD binary eutectic and APSD-OAD-Urea eutectic PCM (c); XRD patterns of APSD, OAD, Urea, and APSD-OAD-Urea eutectic PCM (d).
| Organic-inorganic PCM | ΔH (J/g) | Tm (°C) | Refs. |
|---|---|---|---|
| Urea-NaNO3 | 172.0 | 85.0 | [ |
| Urea-NH4Br | 142.3 | 82.4 | [ |
| CH3COONa•3H2O-KCl-Urea | 222.7 | 47.6 | [ |
| KAl(SO4)2•12H2O-C2H2O4•2H2O | 232.6 | 49.7 | This manuscript |
Table 2 Some organic-inorganic PCMs and their melting enthalpies (ΔH), phase change temperatures (Tm).
| Organic-inorganic PCM | ΔH (J/g) | Tm (°C) | Refs. |
|---|---|---|---|
| Urea-NaNO3 | 172.0 | 85.0 | [ |
| Urea-NH4Br | 142.3 | 82.4 | [ |
| CH3COONa•3H2O-KCl-Urea | 222.7 | 47.6 | [ |
| KAl(SO4)2•12H2O-C2H2O4•2H2O | 232.6 | 49.7 | This manuscript |
Fig. 3. FE-SEM images of PUF (a, b) and eutectic PCM@PUF (c, d) at different magnifications: 50× (a); 200× (b); 100× (c) and 150× (d); one selected area of PCM@PUF and its corresponding elemental mapping (e); DSC curve of PCM@PUF (f).
| Property | δM (MPa) | δx (MPa) | Eb (%) | Se (MPa) | HA (HA) |
|---|---|---|---|---|---|
| silicone thin-layer | 1.492 | 1.520 | 295.46 | 0.60 | 22.8 |
| CMS thin-layer | 2.217 | 1.652 | 211.22 | 0.72 | 27.9 |
Table 3 Compressive strength (δM), compressive stress at 50% strain (δx), elongation at break (Eb), tensile stress at 100% elongation (Se), Shore A hardness (HA) of cured silicone resin thin-layer and CMS thin-layer.
| Property | δM (MPa) | δx (MPa) | Eb (%) | Se (MPa) | HA (HA) |
|---|---|---|---|---|---|
| silicone thin-layer | 1.492 | 1.520 | 295.46 | 0.60 | 22.8 |
| CMS thin-layer | 2.217 | 1.652 | 211.22 | 0.72 | 27.9 |
Fig. 4. Photographs of PCM@PUF and PCM@PUF@CMS with different thicknesses of CMS thin-layers in leakage test (a); residual weight curves of PCM@PUF with and without CMS thin-layer under 55°C (b); DSC curves of PCM@PUF with (c) and without (d) CMS thin-layer under 55°C.
Fig. 5. DSC curve of PCM@PUF in PCM@PUF@CMS (a); XRD patterns of PCM@PUF in PCM@PUF@CMS (b); thermal conductivities of solid PCM, PCM@PUF, silicone resin thin-layer, CMS thin-layer and PCM@PUF@CMS (c); step-cooling curves of PCM@PUF@CMS before and after 150 cycles (d); melting enthalpies and melting points of PCM@PUF@CMS before and after 150 cycles (e).
| Thermal property | Before | After | ||
|---|---|---|---|---|
| Upper | Lower | Upper | Lower | |
| Supercooling degree (°C) | 0.213 | 0.458 | ||
| Melting enthalpy (J/g) | 192.0 | 191.8 | 197.9 | 204.0 |
| Phase-change temperature (°C) | 43.95 | 44.07 | 42.12 | 41.64 |
Table 4 Thermal properties of PCM@PUF@CMS before and after 150 cycles.
| Thermal property | Before | After | ||
|---|---|---|---|---|
| Upper | Lower | Upper | Lower | |
| Supercooling degree (°C) | 0.213 | 0.458 | ||
| Melting enthalpy (J/g) | 192.0 | 191.8 | 197.9 | 204.0 |
| Phase-change temperature (°C) | 43.95 | 44.07 | 42.12 | 41.64 |
| [1] |
J. Lee, S. Wi, S. Yang, S. Kim, Int. J. Therm. Sci. 155 (2020) 106410.
DOI URL |
| [2] |
W.C. Sun, Y.X. Zhang, Z.Y. Ling, X.M. Fang, Z.G. Zhang, Energy Build. 211 (2020) 109806.
DOI URL |
| [3] | L. Zhang, B.W. Cao, Appl. Sci.-Basel 8 (2018) 491. |
| [4] | X. Min, B. Sun, S. Chen, M. Fang, X. Wu, Y.G. Liu, A. Abdelkader, Z. Huang, T. Liu, K. Xi, R.V. Kumar, Energy Stor. Mater. 16 (2019) 597-606. |
| [5] |
X. Min, J. Xiao, M. Fang, W. Wang, Y. Zhao, Y. Liu, A.M. Abdelkader, K. Xi, R.V. Kumar, Z. Huang, Energy Environ. Sci. 14 (2021) 2186-2243.
DOI URL |
| [6] |
Y.T. Fang, J.M. Su, W.W. Fu, X.H. Liang, S.F. Wang, X.N. Gao, Z.G. Zhang, Appl. Therm. Eng. 167 (2020) 114820.
DOI URL |
| [7] |
N. Zhang, Y.P. Yuan, X.L. Cao, Y.X. Du, Z.L. Zhang, Y.W. Gui, Adv. Eng. Mater. 20 (2018) 1700753.
DOI URL |
| [8] |
W.C. Chen, X.H. Liang, S.F. Wang, Y.F. Ding, X.N. Gao, Z.G. Zhang, Y.T. Fang, Chem. Eng. J. 413 (2021) 127549.
DOI URL |
| [9] |
K. Pielichowska, K. Pielichowski, Prog. Mater. Sci. 65 (2014) 67-123.
DOI URL |
| [10] |
S. Ushak, M. Vega, J.A. Lovera-Copa, S. Pablo, M. Lujan, M. Grageda, Sol. Energy Mater. Sol. Cells 209 (2020) 110475.
DOI URL |
| [11] |
R.K. Sharma, P. Ganesan, V.V. Tyagi, H.S.C. Metselaar, S.C. Sandaran, Energy Convers. Manage. 95 (2015) 193-228.
DOI URL |
| [12] |
J. Wang, W. Han, C. Ge, H. Guan, H. Yang, X. Zhang, Renewable Energy 136 (2019) 657-663.
DOI |
| [13] |
S. Xie, J. Sun, Z. Wang, S. Liu, L. Han, G. Ma, Y. Jing, Y. Jia, Sol. Energy Mater. Sol. Cells 168 (2017) 38-44.
DOI URL |
| [14] |
W. Sun, Y. Zhou, J. Feng, X. Fang, Z. Ling, Z. Zhang, Molecules 24 (2019) 363.
DOI URL |
| [15] |
H. Nazir, M. Batool, F.J. Bolivar Osorio, M. Isaza-Ruiz, X. Xu, K. Vignarooban, P. Phelan, A.M.Kannan Inamuddin, Int. J. Heat Mass Transfer 129 (2019) 491-523.
DOI URL |
| [16] |
L. Yang, Y.P. Yuan, N. Zhang, Y.F. Dong, Y.F. Sun, W.H. Ji, Int. J. Energy Res. 44 (2020) 8555-8566.
DOI URL |
| [17] |
W.W. Fu, T. Zou, X.H. Liang, S.F. Wang, X.N. Gao, Z.G. Zhang, Y.T. Fang, Appl. Therm. Eng. 162 (2019) 114253.
DOI URL |
| [18] |
C. Zhang, Z.Y. Zhang, R.D. Ye, X.N. Gao, Z.Y. Ling, Materials 11 (2018) 2369.
DOI URL |
| [19] |
Y. Zhao, X. Min, Z. Huang, Y.G. Liu, X. Wu, M. Fang, Energy Build. 158 (2018) 1049-1062.
DOI URL |
| [20] |
Y. Zhao, X. Min, Z. Ding, S. Chen, C. Ai, Z. Liu, T. Yang, X. Wu, Y. Liu, S. Lin, Z. Huang, P. Gao, H. Wu, M. Fang, Adv. Sci. 7 (2020) 1902051.
DOI URL |
| [21] |
A. Sagara, T. Nomura, M. Tsubota, N. Okinaka, T. Akiyama, Mater. Chem. Phys. 146 (2014) 253-260.
DOI URL |
| [22] |
X.Q. Peng, S.Q. Mo, R.N. Li, J. Li, C. Tian, W.Z. Liu, Y.J. Wang, Environ. Chem. Lett. 19 (2021) 719-728.
DOI URL |
| [23] |
S. Zhou, G. Hao, X. Zhou, W. Jiang, T. Wang, N. Zhang, L. Yu, Chem. Eng. J. 302 (2016) 155-162.
DOI URL |
| [24] |
T.H. Wang, T.F. Yang, C.H. Kao, W.M. Yan, M. Ghalambaz, Adv. Powder Technol. 31 (2020) 2421-2429.
DOI URL |
| [25] |
M.S. Ghoghaei, A. Mahmoudian, O. Mohammadi, M.B. Shafii, H.J. Mosleh, M. Zandieh, M.H. Ahmadi, J. Therm. Anal. Calorim. 145 (2021) 245-268.
DOI URL |
| [26] |
L.Z. Guo, X.X. Yang, F.H. Dong, Y.H. Qian, J.W. Guo, X.Y. Lin, H. Shaghaleh, W.Q. Liu, X. Xu, S.F. Wang, S.W. Liu, Mater. Chem. Phys. 247 (2020) 122868.
DOI URL |
| [27] |
P. Song, J. Song, Y. Zhang, Compos. Pt. B-Eng. 191 (2020) 107979.
DOI URL |
| [28] |
M.T. Nazir, B.T. Phung, G.H. Yeoh, G. Yasin, S. Akram, M.S. Bhutta, M.A. Mehmood, S. Hussain, S. Yu, I. Kabir, Bull. Mater. Sci. 43 (2020) 220.
DOI URL |
| [29] |
N.K. Sonnahalli, R. Chowdhary, J. Prosthodont. Res. 64 (2020) 431-435.
DOI PMID |
| [30] |
P. Song, J.N. Song, Y. Zhang, Compos. Pt. B-Eng. 191 (2020) 107979.
DOI URL |
| [31] |
W.C. Chen, X.H. Liang, S.F. Wang, X.N. Gao, Z.G. Zhang, Y.T. Fang, Chem. Eng. J. 410 (2021) 128308.
DOI URL |
| [32] |
X. Li, Y. Zhou, H. Nian, F. Zhu, X. Ren, O. Dong, C. Hai, Y. Shen, J. Zeng, Appl. Therm. Eng. 102 (2016) 708-715.
DOI URL |
| [33] |
G. Diarce, E. Corro-Martínez, L. Quant, Á. Campos-Celador, A. García-Romero, Sol. Energy Mater. Sol. Cells 157 (2016) 1065-1075.
DOI URL |
| [34] |
B. Liu, X. Zhang, J. Ji, W. Hua, F. Mao, Int. J. Energy Res. 44 (2020) 3626-3639.
DOI URL |
| [35] |
X. Jin, Q. Xiao, T. Xu, G. Huang, H. Wu, D. Wang, Y. Liu, H. Zhang, A.C.K. Lai, Energy Build 231 (2021) 110615.
DOI URL |
| [1] | Renquan Wang, Tingchuan Zhou, Zhiyong Zhong. Low-temperature processing of LiZn-based ferrite ceramics by co-doping of V2O5 and Sb2O3: Composition, microstructure and magnetic properties [J]. J. Mater. Sci. Technol., 2022, 99(0): 1-8. |
| [2] | Yin Du, Xuhui Pei, Zhaowu Tang, Fan Zhang, Qing Zhou, Haifeng Wang, Weimin Liu. Mechanical and tribological performance of CoCrNiHfx eutectic medium-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 90(0): 194-204. |
| [3] | Haijun Su, Yuan Liu, Qun Ren, Zhonglin Shen, Haifang Liu, Di Zhao, Guangrao Fan, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Distribution control and formation mechanism of gas inclusions in directionally solidified Al2O3-Er3Al5O12-ZrO2 ternary eutectic ceramic by laser floating zone melting [J]. J. Mater. Sci. Technol., 2021, 66(0): 21-27. |
| [4] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
| [5] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
| [6] | Peijian Shi, Yi Li, Yuebo Wen, Yiqi Li, Yan Wang, Weili Ren, Tianxiang Zheng, Yifeng Guo, Long Hou, Zhe Shen, Ying Jiang, Jianchao Peng, Pengfei Hu, Ningning Liang, Qingdong Liu, Peter K. Liaw, Yunbo Zhong. A precipitate-free AlCoFeNi eutectic high-entropy alloy with strong strain hardening [J]. J. Mater. Sci. Technol., 2021, 89(0): 88-96. |
| [7] | Qinqin Wei, Guoqiang Luo, Rong Tu, Jian Zhang, Qiang Shen, Yujie Cui, Yunwei Gui, Akihiko Chiba. High-temperature ultra-strength of dual-phase Re0.5MoNbW(TaC)0.5 high-entropy alloy matrix composite [J]. J. Mater. Sci. Technol., 2021, 84(0): 1-9. |
| [8] | Haifang Liu, Haijun Su, Zhonglin Shen, Di Zhao, Yuan Liu, Yinuo Guo, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Preparation of large-size Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 218-223. |
| [9] | Yujie Chen, Xianghai An, Sam Zhang, Feng Fang, Wenyi Huo, Paul Munroe, Zonghan Xie. Mechanical size effect of eutectic high entropy alloy: Effect of lamellar orientation [J]. J. Mater. Sci. Technol., 2021, 82(0): 10-20. |
| [10] | Xiaolong Li, Xinxin Sheng, Yongqiang Guo, Xiang Lu, Hao Wu, Ying Chen, Li Zhang, Junwei Gu. Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities [J]. J. Mater. Sci. Technol., 2021, 86(0): 171-179. |
| [11] | Chunjuan Cui, Cong Wang, Pei Wang, Wei Liu, Yuanyuan Lai, Li Deng, Haijun Su. Microstructure and fracture toughness of the Bridgman directionally solidified Fe-Al-Ta eutectic at different solidification rates [J]. J. Mater. Sci. Technol., 2020, 42(0): 63-74. |
| [12] | Min Jung Kim, Gyeol Chan Kang, Sung Hwan Hong, Hae Jin Park, Sang Chul Mun, Gian Song, Ki Buem Kim. Understanding microstructure and mechanical properties of (AlTa0.76)xCoCrFeNi2.1 eutectic high entropy alloys via thermo-physical parameters [J]. J. Mater. Sci. Technol., 2020, 57(0): 131-137. |
| [13] | X.Y. Jiao, C.F. Liu, Z.P. Guo, G.D. Tong, S.L. Ma, Y. Bi, Y.F. Zhang, S.M. Xiong. The characterization of Fe-rich phases in a high-pressure die cast hypoeutectic aluminum-silicon alloy [J]. J. Mater. Sci. Technol., 2020, 51(0): 54-62. |
| [14] | Yu Yin, Damon Kent, Qiyang Tan, Michael Bermingham, Ming-Xing Zhang. Spheroidization behaviour of a Fe-enriched eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2020, 51(0): 173-179. |
| [15] | Liting Guo, Changdong Gu, Jie Feng, Yongbin Guo, Yuan Jin, Jiangping Tu. Hydrophobic epoxy resin coating with ionic liquid conversion pretreatment on magnesium alloy for promoting corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 37(0): 9-18. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
