J. Mater. Sci. Technol. ›› 2021, Vol. 86: 171-179.DOI: 10.1016/j.jmst.2021.02.009
• Research Article • Previous Articles Next Articles
Xiaolong Lia,b,1, Xinxin Shengc,1, Yongqiang Guod,e, Xiang Lua,b,*(), Hao Wua,b, Ying Chenc, Li Zhangc, Junwei Gud,**(
)
Received:
2021-01-31
Accepted:
2021-02-21
Published:
2021-09-30
Online:
2021-09-24
Contact:
Xiang Lu,Junwei Gu
About author:
** nwpugjw@163.com, gjw@nwpu.edu.cn (J. Gu).Xiaolong Li, Xinxin Sheng, Yongqiang Guo, Xiang Lu, Hao Wu, Ying Chen, Li Zhang, Junwei Gu. Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities[J]. J. Mater. Sci. Technol., 2021, 86: 171-179.
Fig. 1. SEM images of porous (a) HDPE/CNTs-3:7, (b) HDPE/CNTs-4:6 and (c) HDPE/CNTs-5:5, respectively; (d) the digital pictures of HDPE/CNTs/PEO before and after etching the PEO component (e) the weight loss ratio of HDPE/CNTs porous scaffolds obtained from HDPE/CNTs/PEO, and (f) the particle size distribution of HDPE/CNTs porous scaffolds.
Fig. 2. (a) Digital pictures of leakage test, and (b) the wta and waa of PW for SSCPCMs; the SEM images of (c and d) HDPE/CNTs/PW-3:7, (e) HDPE/CNTs/PW-4:6 and (f) HDPE/CNTs/PW-5:5 after 24 h leakage test.
Fig. 4. (a) DSC curves (b) phase change enthalpies, (c) enthalpy efficiencies and (d) the comparison of SSCPCMs and previous PW-based SSCPCMs [32,[43], [44], [45], [46], [47], [48], [49]].
Fig. 5. (a) UV-vis-NIR spectra of obtained SSCPCMs, (b) schematic of the setup for the light-to-thermal conversion test, in which the Sp1, Sp2, Sp3 and Sp4 are corresponding to the HDPE/PW-3:7, HDPE/CNTs/PW-3:7, HDPE/CNTs/PW-4:6, and HDPE/CNTs/PW-5:5 respectively, (c) Temperature-time curves during the test, and (d) the IR thermography images of HDPE/PW-3:7 and SSCPCMs during the light-to-thermal conversion test, (e) thermal conductivity of obtained SSCPCMs.
Fig. 6. (a) Volume electrical conductivity of obtained SSCPCMs, (b) digital photos of HDPE/PW-3:7 and HDPE/CNTs/PW-3:7 in the circuit (b1, b2, and b3 are the current and bulb brightness changing process of HDPE/CNTs/PW-3:7 under 20 V, 25 V and 30 V, b4 is the picture of electrical conductivity for HDPE/PW-3:7 at 30 V); (c) the temperature-time curves and (d) IR thermography images of HDPE/CNTs/PW-3:7 under different voltages.
Fig. 7. (a) FTIR spectra, (b) XRD patterns, (c) DSC curves, (d) phase change enthalpy and (e) phase change temperatures of HDPE/CNTs/PW-3:7 before and after 50 cycles.
[1] |
Y. Li, Y.Q. Li, X.B. Huang, H.Y. Zheng, G.L. Lu, Z.S. Xi, G. Wang, Compos. Sci. Technol. 195(2020), 108197.
DOI URL |
[2] | X.T. Shi, R.H. Zhang, K.P. Ruan, T.B. Ma, Y.Q. Guo, J.W. Gu, J. Mater. Sci 82(2021) 239-249. |
[3] |
J.A.C. Costa, A.E. Martinelli, R.M. Nascimento, A.M. Mendes, Constr. Build. Mater. 232(2020), 117167.
DOI URL |
[4] |
X. Lu, H.W. Huang, X.Y. Zhang, P.C. Lin, J.T. Huang, X.X. Sheng, L. Zhang, J.P. Qu, Compos. Part B-Eng. 177(2019), 107372.
DOI URL |
[5] |
K. Griffiths, N.R. Halcovitch, J.M. Griffin, Chem. Mater. 32(2020) 9925-9936.
DOI URL |
[6] | Y. Deng, J.H. Li, T.T. Qian, W.M. Guan, X. Wang, J. Mater. Sci 33(2017) 198-203. |
[7] | Y.R. Liu, Y.P. Xia, K. An, C.W. Huang, W.W. Cui, S. Wei, R. Ji, F. Xu, H.Z. Zhang, L.X. Sun, J. Mater. Sci 35(2019) 939-945. |
[8] | J. Bergamo, E. Rossi, J.M. Maffi, L.D. Angelis, M.I. Errea, Sustain. Energy. Techn. 41(2020), 100794. |
[9] |
M.H. Sipponen, A. Henn, P. Penttilä, M. Österberg, Chem. Eng. J. 393(2020), 124711.
DOI URL |
[10] | L. Han, X.L. Jia, Z.M. Li, Z.M. Yang, G. Wang, G.Q. Ning, Ind. Eng. Chem. Res. 57(2018), 13026113035. |
[11] |
Z.N. Jiang, W.B. Yang, F.F. He, C.Q. Xie, J.H. Fan, J.Y. Wu, K. Zhang, Langmuir 34 (2018) 14254-14264.
DOI URL |
[12] |
J.A. Molefi, A.S. Luyt, I. Krupa, Thermochim. Acta 500 (2010) 88-92.
DOI URL |
[13] |
N. Sheng, R.J. Zhu, T. Nomura, Z.H. Rao, C.Y. Zhu, Y. Aoki, H. Habazaki, T. Akiyama, Sol. Energ. Mat. Sol. C 206 (2020), 110280.
DOI URL |
[14] |
X. Gao, Tb. Zhao, G. Luo, B.H. Zheng, H. Huang, X. Han, R. Ma, Y.Q. Chai, Energ. Fuel. 32(2018) 4016-4024.
DOI URL |
[15] |
D.Q. Zou, X.F. Ma, X.S. Liu, P.J. Zheng, Y.P. Hu, Int. J. Heat Mass Transf. 120(2018) 33-41.
DOI URL |
[16] |
X.T. Yang, S.G. Fan, Y. Li, Y.Q. Guo, Y.G. Li, K.P. Ruan, S.M. Zhang, J.L. Zhang, J. Kong, J.W. Gu, Compos. Part A-Appl. S. 128(2020), 105670.
DOI URL |
[17] | Y. Li, C.D. Gong, C.G. Li, K.P. Ruan, C. Liu, H. Liu, J.W. Gu, J. Mater. Sci 82(2021) 250-256. |
[18] |
Y. Zhou, W.C. Sun, Z.Y. Ling, X.M. Fang, Z.G. Zhang, Ind. Eng. Chem. Res. 56(2017) 14799-14806.
DOI URL |
[19] | Y.Q. Guo, K.P. Ruan, X.T. Shi, X.T. Yang, J.W. Gu, Compos. Sci. Technol. 19(2020), 108134. |
[20] |
K.P. Ruan, X.T. Shi, Y.Q. Guo, J.W. Gu, Compos. Commun. 22(2020), 100518.
DOI URL |
[21] |
Y.Q. Guo, K.P. Ruan, X.T. Shi, X.T. Yang, J.W. Gu, Compos. Sci. Technol. 193(2020), 108134.
DOI URL |
[22] |
P.P. Liu, H.Y. Gao, X. Chen, D.J. Chen, J.J. Lv, M.Y. Han, P. Cheng P, G. Wang, Compos. Part B-Eng 195 (2020) 108072.
DOI URL |
[23] |
J. Yang, Y.L. Jia, N.C. Bing, L.L. Wang, H.Q. Xie, W. Yu, Appl. Therm. Eng. 163(2019), 114412.
DOI URL |
[24] |
X.C. Zuo, X.G. Zhao, J.W. Li, Y.Q. Hu, H.M. Yang, D.L. Chen, Sol. Energy 209 (2020) 85-95.
DOI URL |
[25] |
V. Manthina, A.G. Agrios, Solid. State. Sci. 61(2016) 116-120.
DOI URL |
[26] | O. Ola, Y. Chen, Q.J. Niu, Y.D. Xia, T. Mallick, Y.Q. Zhu, J. Mater. Sci 36(2020) 70-78. |
[27] |
L. Zhang, L. An, Y.H. Wang, A. Lee, Y. Schuman, A. Ural, A.S. Fleischer, G. Feng, Chem. Eng. J. 373(2019) 857-869.
DOI |
[28] |
J. Ding, X.D. Wu, X.D. Shen, S. Cui, X.B. Chen, Energy 210 (2020), 118478.
DOI URL |
[29] |
H.H. Liao, W.H. Chen, Y. Liu, Q. Wang, Compos. Sci. Technol. 189(2020), 108010.
DOI URL |
[30] | Y. Wu, C.Z. Chen, Y.F. Jia, J. Wu, Y. Huang, L.G. Wang, Acs Appl. Energy Mater. 210(2018) 167-181. |
[31] |
X. Lu, H.W. Yu, L.H. Zhang, Y.F. Zheng, L.Q. Xu, Y.Q. Zhao, Energ. Fuel 34 (2020) 9020-9029.
DOI URL |
[32] |
P. Sobolčiak, H. Abdelrazeq, N.G. Özerkan, M. Ouederni, Z. Nógellová, M.A. AlMaadeed, M. Karkri, I. Krupa, Appl. Therm. Eng. 107(2016) 1313-1323.
DOI URL |
[33] |
P. Chen, X.N. Gao, Y.Q. Wang, T. Xu, Y.T. Fang, Z.G. Zhang, Sol. Energy Mater. Sol. Cells 149 (2016) 60-65.
DOI URL |
[34] |
S. Li, K. Wang, X.Z. Jiang, Q.X. Hu, C. Zhang, B. Wang, ACS Biomater. Sci. Eng. 6(2020) 2297-2311.
DOI URL |
[35] | H.K. Lee, S.W. Lee, Mater. Design 189 (2020) 108497. |
[36] |
I. Hölken, G. Neubüser, V. Postica, L. Bumke, O. Lupan, M. Baum, Y.K. Mishra, L. Kienle, R. Adelung, ACS Appl. Mater. Interfaces 8 (31) (2016) 20491-20498.
DOI URL |
[37] |
Z. Jiang, Z.P. Li, Z.H. Qin, H.Y. Sun, X.L. Jiao, D.R. Chen, Nanoscale 5 (2013) 11770-11775.
DOI PMID |
[38] | Y.L. Tsai, P. Theato, C.F. Huang, S.H. Hsu, Appl. Mater. Today 20 (2020), 100778. |
[39] |
H.J. Li, N. Zhang, X.L. Zhao, Z.Q. Xu, Z.Y. Zhang, Y. Wang, Sensor. Actuat. B-Chem 315 (2020) 128136.
DOI URL |
[40] |
B. Wu, Y.Y. Jiang, Y.J. Wang, C.L. Zhou, X. Zhang, J.X. Lei, Int. J. Heat. Mass. Tran. 126(2018) 1134-1142.
DOI URL |
[41] |
T.T. Shi, X.G. Zhang, J.X. Qiao, X.W. Wu, G. Chen, G.Q. Leng, F.K. Lin, X. Min, Z.H. Huang, Polymer 212 (2021), 123143.
DOI URL |
[42] |
X. Lu, Y.F. Zheng, J.L. Yang, J.Q. Qu, Compos. Part B-Eng. 199(2020), 108308.
DOI URL |
[43] | X. Guo, S.D. Zhang, J.Z. Cao, Compos. Part A-Appl. S. 93(2018) 10783. |
[44] |
L.F. Liu, J.Y. Chen, Y. Qu, T. Xu, H.J. Wu, G.S. Huang, X.Q. Zhou, L.X. Yang, Sol. Energy Mater. Sol. Cells 200 (2019), 110038.
DOI URL |
[45] |
Y.F. Zhang, W. Li, J.H. Huang, M. Cao, G.P. Du, Materials 13 (2020) 894.
DOI URL |
[46] |
Z. Ding, W.B. Yang, F.F. He, Z.N. Jiang, R. He, J.H. Fan, K. Zhang, Polymer 204 (2020), 122824.
DOI URL |
[47] |
P. Sobolciak, Karkri,, M.A. Al-Maadeed, I. Krupa, Renew. Energ. 88(2016) 372-382.
DOI URL |
[48] |
M. Karkri, M. Lachheb, Z. Nógellová, B. Boh, B. Sumiga, M.A. AlMaadeed, A. Fethi, I. Krupa, Energ. Buildings 88 (2015) 144-152.
DOI URL |
[49] |
P. Zhang, Y. Hu, L. Song, J.X. Ni, W.Y. Xing, J. Wang, Sol. Energy Mater. Sol. Cells 94 (2010) 360-365.
DOI URL |
[50] | K.P. Ruan, Y.Q. Guo, C.Y. Lu, X.T. Shi, T.B. Ma, Y.L. Zhang, J. Kong, J.W. Gu, Research 2021 (2021), 8438614. |
[51] | X.T. Yang, X. Zhong, J.L. Zhang, J.W. Gu, J. Mater. Sci 68(2021) 209-215. |
[1] | Chaobin Bi, Kaicheng Xu, Chaoquan Hu, Ling Zhang, Zhongbo Yang, Shuaipeng Tao, Weitao Zheng. Three distinct optical-switching states in phase-change materials containing impurities: From physical origin to material design [J]. J. Mater. Sci. Technol., 2021, 75(0): 118-125. |
[2] | Yurong Liu, Yongpeng Xia, Kang An, Chaowei Huanga, Weiwei Cui, Sheng Wei, Rong Ji, Fen Xu, Huanzhi Zhang, Lixian Sun. Fabrication and characterization of novel meso-porous carbon/n-octadecane as form-stable phase change materials for enhancement of phase-change behavior [J]. J. Mater. Sci. Technol., 2019, 35(5): 939-945. |
[3] | Deng Yong,Li* Jinhong,Qian Tingting,Guan Weimin,Wang Xiang. Preparation and Characterization of KNO3/Diatomite Shape-Stabilized Composite Phase Change Material for High Temperature Thermal Energy Storage [J]. J. Mater. Sci. Technol., 2017, 33(2): 198-203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||