J. Mater. Sci. Technol. ›› 2021, Vol. 86: 158-170.DOI: 10.1016/j.jmst.2020.12.079
• Research Article • Previous Articles Next Articles
Zhufeng Hea, Nan Jiaa,*(
), Hongwei Wanga, Haile Yana, Yongfeng Shenb,*(
)
Received:2020-12-01
Accepted:2020-12-27
Published:2021-09-30
Online:2021-09-24
Contact:
Nan Jia,Yongfeng Shen
About author:*E-mail addresses: jian@atm.neu.edu.cn (N. Jia),Zhufeng He, Nan Jia, Hongwei Wang, Haile Yan, Yongfeng Shen. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature[J]. J. Mater. Sci. Technol., 2021, 86: 158-170.
| Alloys | Crystal structure | Average grain size (μm) | Yield strength at 293 K/77 K (MPa) | Ultimate tensile strength at 293 K/77 K (MPa) | Uniform elongation at 293 K/77 K (%) | Raw-materials cost (USD/kg) | Ref. |
|---|---|---|---|---|---|---|---|
| Fe49Mn30Co10Cr10N1 | fcc | 5.8 | 463 / 1078 | 845 / 1630 | 53 / 33.5 | 5.3 | This work |
| equiatomic FeCoMnCrNi | fcc | 6 | 375 / 728 | 733 / 1250 | 46 / 71 | 11.9 | [ |
| equiatomic FeCoMnCrNi | fcc | 0.65 | 798 / 1240 | 887 / 1460 | 26 / 41 | 11.9 | [ |
| FeCoNiCrTi0.2 | fcc | 51 | 700 / 860 | 1240 / 1580 | 36 / 46 | 14.4 | [ |
| V10Cr15Mn5Fe35Co10Ni25 | fcc | 1.5 (heterostructured) | 761 / 970 | 936 / 1314 | 28.3 / 36.3 | 42.3 | [ |
| equiatomic CoCrNi | fcc | 16 | 362 / 530 | 860 / 1236 | 46 / 55 | 18.9 | [ |
| Fe40Mn40Co10Cr10 | fcc | 8 | 272 / 481 | 567 / 1003 | 47 / 65 | 5.3 | [ |
| (Fe40Mn40Co10Cr10)B | fcc | 3.3 | 418 / 1098 | 850 / 1370 | 67 / 22 | 5.3 | [ |
| FeCoMnCrNiMo0.2 | fcc | 35 | 376 / 637 | 767 / 1212 | 52.5 / 71.2 | 13.1 | [ |
| Co17.5Cr12.5Fe55Ni10Mo3C2 | fcc | 3.7 | 617 / 1057 | 1010 / 1978 | 39.8 / 53.3 | 10.2 | [ |
| Fe22.5Co23.5Mn22Ni24Cr6C2 | fcc | 150 | 320 / 605 | 685 / 1060 | 48 / 47 | 13 | [ |
| Fe40Mn20Cr20Ni20 | fcc | 3 (heterostructured) | 1000/ 1185 | - / 1320 | - / 22 | 4.9 | [ |
| equiatomic FeCoCrNi | fcc | 35 | 260 / 480 | 624 / 997 | 57 / 73 | 14.5 | [ |
| Al0.3CoCrFeNi | fcc | 50 | 220 / 515 | 620 / 1010 | 58.4 / 68 | 14.1 | [ |
| 316 LN | fcc | - | 284 / 683 | 642 / 1508 | 57 / 61 | 4.6 | [ |
| HfNbTaTiZr | bcc | 60 | 984 / 1638 | 1125 / 1710 | 4 / 2 | 152 | [ |
| Al0.6CoCrFeNi | fcc + bcc | 0.6 (heterostructured) | 786 / 964 | 1101 / 1422 | 28 / 22 | 14.1 | [ |
| V10Cr10Co30Fe50 | fcc + bcc | 2.3 | 409 / 520 | 1026 / 1990 | 20 / 33 | 45.5 | [ |
Table 1 Comparison of crystal structure, average grain size, yield strength, ultimate tensile strength, uniform elongation and raw-materials cost of the studied FeMnCoCrN HEA and other cryogenic alloys under uniaxial tensile testing. The average grain size in the heterostructured alloys denotes that in the recrystallized region. Mechanical properties are obtained at both 293 and 77 K.
| Alloys | Crystal structure | Average grain size (μm) | Yield strength at 293 K/77 K (MPa) | Ultimate tensile strength at 293 K/77 K (MPa) | Uniform elongation at 293 K/77 K (%) | Raw-materials cost (USD/kg) | Ref. |
|---|---|---|---|---|---|---|---|
| Fe49Mn30Co10Cr10N1 | fcc | 5.8 | 463 / 1078 | 845 / 1630 | 53 / 33.5 | 5.3 | This work |
| equiatomic FeCoMnCrNi | fcc | 6 | 375 / 728 | 733 / 1250 | 46 / 71 | 11.9 | [ |
| equiatomic FeCoMnCrNi | fcc | 0.65 | 798 / 1240 | 887 / 1460 | 26 / 41 | 11.9 | [ |
| FeCoNiCrTi0.2 | fcc | 51 | 700 / 860 | 1240 / 1580 | 36 / 46 | 14.4 | [ |
| V10Cr15Mn5Fe35Co10Ni25 | fcc | 1.5 (heterostructured) | 761 / 970 | 936 / 1314 | 28.3 / 36.3 | 42.3 | [ |
| equiatomic CoCrNi | fcc | 16 | 362 / 530 | 860 / 1236 | 46 / 55 | 18.9 | [ |
| Fe40Mn40Co10Cr10 | fcc | 8 | 272 / 481 | 567 / 1003 | 47 / 65 | 5.3 | [ |
| (Fe40Mn40Co10Cr10)B | fcc | 3.3 | 418 / 1098 | 850 / 1370 | 67 / 22 | 5.3 | [ |
| FeCoMnCrNiMo0.2 | fcc | 35 | 376 / 637 | 767 / 1212 | 52.5 / 71.2 | 13.1 | [ |
| Co17.5Cr12.5Fe55Ni10Mo3C2 | fcc | 3.7 | 617 / 1057 | 1010 / 1978 | 39.8 / 53.3 | 10.2 | [ |
| Fe22.5Co23.5Mn22Ni24Cr6C2 | fcc | 150 | 320 / 605 | 685 / 1060 | 48 / 47 | 13 | [ |
| Fe40Mn20Cr20Ni20 | fcc | 3 (heterostructured) | 1000/ 1185 | - / 1320 | - / 22 | 4.9 | [ |
| equiatomic FeCoCrNi | fcc | 35 | 260 / 480 | 624 / 997 | 57 / 73 | 14.5 | [ |
| Al0.3CoCrFeNi | fcc | 50 | 220 / 515 | 620 / 1010 | 58.4 / 68 | 14.1 | [ |
| 316 LN | fcc | - | 284 / 683 | 642 / 1508 | 57 / 61 | 4.6 | [ |
| HfNbTaTiZr | bcc | 60 | 984 / 1638 | 1125 / 1710 | 4 / 2 | 152 | [ |
| Al0.6CoCrFeNi | fcc + bcc | 0.6 (heterostructured) | 786 / 964 | 1101 / 1422 | 28 / 22 | 14.1 | [ |
| V10Cr10Co30Fe50 | fcc + bcc | 2.3 | 409 / 520 | 1026 / 1990 | 20 / 33 | 45.5 | [ |
Fig. 1. EBSD maps of the (a) N0, (b) N1.0, (c) N1.8 and (d) N2.6 alloys before uniaxial tensile loading: (a1-d1) phase distribution maps and (a2-d2) orientation maps showing grain orientation distributions relative to the rolling direction. In the phase distribution maps, high-angle boundaries with misorientation angles larger than 10° are indicated by thick black lines, low-angle boundaries with misorientation angles between 3° and 10° are indicated by thin black lines, and Σ3 twin boundaries in the fcc phase are indicated by white solid lines, respectively.
Fig. 2. (a) Engineering stress-strain curves, (b) true stress-strain curves, (c) strain hardening rates to true strain of the N0, N1.0, N1.8 and N2.6 alloys under uniaxial tensile loading at 293 K and 77 K. The inset of (c) shows the N1.0 specimen after tensile testing at 77 K. (d) XRD patterns of the alloys before and after tensile testing at different temperatures.
| Alloys | Average grain size (μm) | Yield strength at 293 K/77 K (MPa) | Ultimate tensile strength at 293 K/77 K (MPa) | Uniform elongation at 293 K/77 K (%) |
|---|---|---|---|---|
| N0 | 6.2 | 288/398 | 697/1323 | 68/53 |
| N1.0 | 5.8 | 463/1078 | 845/1630 | 53/33.5 |
| N1.8 | 5.3 | 517/1206 | 909/1620 | 49.5/11 |
| N2.6 | 4.5 | 596/- | 977/- | 47/- |
Table 2 Average grain sizes and mechanical properties of the studied alloys.
| Alloys | Average grain size (μm) | Yield strength at 293 K/77 K (MPa) | Ultimate tensile strength at 293 K/77 K (MPa) | Uniform elongation at 293 K/77 K (%) |
|---|---|---|---|---|
| N0 | 6.2 | 288/398 | 697/1323 | 68/53 |
| N1.0 | 5.8 | 463/1078 | 845/1630 | 53/33.5 |
| N1.8 | 5.3 | 517/1206 | 909/1620 | 49.5/11 |
| N2.6 | 4.5 | 596/- | 977/- | 47/- |
Fig. 3. Microstructures of the specimens with 11 % reduction in the cross-section area of the (a) N0, (b) N1.0 and (c) N1.8 alloys deformed at 77 K. (d) and (e) Microstructures of the region close to the fracture surface of the N0 and N1.0 alloys deformed at 77 K, respectively. (a1-e1) Phase distribution maps, (a2-e2) orientation maps showing grain orientation distributions relative to the tensile axis. In the phase distribution maps, high-angle boundaries with misorientation angles larger than 10° are indicated by thick black lines, low-angle boundaries with misorientation angles between 3° and 10° are indicated by thin black lines, and Σ3 twin boundaries in the fcc phase are indicated by white solid lines, respectively.
Fig. 4. TEM micrographs of a region close to the fracture surface of the N1.0 alloy deformed at 293 K. (a) Dense deformation twins and the diffraction pattern taken from the selected area. (b) Multiple twin systems and the diffraction pattern for the selected area. (c) The magnified view of deformation twins. (c2, c3) Diffraction patterns and HRTEM image taken from the selected area in (c1), respectively.
Fig. 5. TEM micrographs of the N1.0 alloy with 11 % reduction in the cross-section area deformed at 77 K. (a) The refined microstructure consisting of ε-martensite laths and the diffraction pattern taken from the selected area. (b1) Dense ε-martensite laths indicated by green arrows and a small number of deformation twins indicated by red arrows, (b2, b3) diffraction patterns taken from the selected area in (b1), respectively.
Fig. 6. TEM micrographs of a region close to the fracture surface of the N1.0 alloy deformed at 77 K. (a) The refined microstructure consisting of dense ε-martensite laths and deformation twins and the diffraction patterns taken from the selected area. (b) The bright-field and the corresponding dark-field TEM micrographs taken from the red dotted rectangle in (a). (c) HRTEM image taken from the orange dotted rectangle in (a) along the [011]γ axis, showing the alternately distributed ε-martensite laths and deformation twins. GB: grain boundary.
| btwin (m) | Ltwin (m) | btr (m) | Ltr (m) | G (GPa) | h (m) |
|---|---|---|---|---|---|
| 1.2 × 10-10 | 2.89 × 10-7 | 1.47 × 10-10 | 2.89 × 10-7 | 76 | 5 × 10-6 |
Table 3 Material parameters used for calculating critical stresses of twin and ε-martensite formation.
| btwin (m) | Ltwin (m) | btr (m) | Ltr (m) | G (GPa) | h (m) |
|---|---|---|---|---|---|
| 1.2 × 10-10 | 2.89 × 10-7 | 1.47 × 10-10 | 2.89 × 10-7 | 76 | 5 × 10-6 |
Fig. 7. (a) Various strength contributions to the flow stress of the N1.0 alloy during deformation at 77 K. (b) Schematic sketches showing the deformation mechanisms in the N-free and the N-doped FeMnCoCr HEAs under cryogenic loading. Note: Before deformation grains in the N-doped alloy are finer than those in the base alloy.
| [1] |
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377(2004) 213-218.
DOI URL |
| [2] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6(2004) 299-303.
DOI URL |
| [3] |
F. Otto, A. Dlouh′y, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61(2013) 5743-5755.
DOI URL |
| [4] |
G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater. 118(2016) 152-163.
DOI URL |
| [5] |
Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Nature 563 (2018) 546-550.
DOI URL |
| [6] |
O.N. Senkov, G.B. Wilks, J.M. Scott, S.V. Senkova, D.B. Miracle, Intermetallics 19 (2011) 698-706.
DOI URL |
| [7] |
C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, J.W. Yeh, Intermetallics 62 (2015) 76-83.
DOI URL |
| [8] |
M. Feuerbacher, M. Heidelmann, C. Thomas, Mater. Res. Lett. 3(2014) 1-6.
DOI URL |
| [9] |
Y.J. Zhao, J.W. Qiao, S.G. Ma, M.C. Gao, H.J. Yang, M.W. Chen, Y. Zhang, Mater. Des. 96(2016) 10-15.
DOI URL |
| [10] |
R. Soler, A. Evirgen, M. Yao, C. Kirchlechner, F. Stein, M. Feuerbacher, D. Raabe, G. Dehm, Acta Mater. 156(2018) 86-96.
DOI URL |
| [11] |
S.C. Fang, W.P. Chen, Z.Q. Fu, Mater. Des. 54(2014) 973-979.
DOI URL |
| [12] |
W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26 (2012) 44-51.
DOI URL |
| [13] | Z.Q. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H.M. Wen, W. Xiong, D.L. Zhang, Y.Z. Zhou, T.J. Rupert, W.P. Chen, E.J. Lavernia, Sci. Adv. 4(2018) 8712. |
| [14] |
Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
| [15] |
Z.M. Li, D. Raabe, JOM 69 (2017) 2099-2106.
DOI URL |
| [16] |
Z.M. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, Acta Mater. 131(2017) 323-335.
DOI URL |
| [17] |
W.J. Lu, C.H. Liebscher, G. Dehm, D. Raabe, Z.M. Li, Adv. Mater. 30(2018),1804727.
DOI URL |
| [18] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
| [19] | S.J. Sun, Y.Z. Tian, X.H. An, H.R. Lin, J.W. Wang, Z.F. Zhang, Mater. Today Nano 4 (2018) 46-53. |
| [20] |
Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Acta Mater. 165(2019) 228-240.
DOI |
| [21] | H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia, J. Mater, Sci. Technol. 48(2020) 146-155. |
| [22] |
R.R. Eleti, N. Stepanov, S. Zherebtsov, Scr. Mater. 188(2020) 118-123.
DOI URL |
| [23] |
Q. Li, T.W. Zhang, J.W. Qiao, S.G. Ma, D. Zhao, P. Lu, Z.H. Wang, J. Alloys Compd. 816(2020), 152663.
DOI URL |
| [24] |
D.G. Kim, Y.H. Jo, J. Yang, W.M. Choi, H.S. Kim, B.J. Lee, S.S. Sohn, S. Lee, Scr. Mater. 171(2019) 67-72.
DOI URL |
| [25] |
Y.H. Jo, S. Jung, W.M. Choi, S.S. Sohn, H.S. Kim, B.J. Lee, N.J. Kim, S. Lee, Nat. Commun. 8(2017) 15719.
DOI PMID |
| [26] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater. 128(2017) 292-303.
DOI URL |
| [27] |
Z.F. He, N. Jia, D. Ma, H.L. Yan, Z.M. Li, D. Raabe, Mater. Sci. Eng. A 759 (2019) 437-447.
DOI URL |
| [28] |
J.B. Seol, J.W. Bae, J.G. Kim, H. Sung, Z.M. Li, H.H. Lee, S.H. Shim, J.H. Jang, W.S. Ko, S.I. Hong, H.S. Kim, Acta Mater. 194(2020) 366-377.
DOI URL |
| [29] | Y. Wu, F. Zhang, X.Y. Yuan, H.L. Huang, X.C. Wen, Y.H. Wang, M.Y. Zhang, H.H. Wu, X.J. Liu, H. Wang, S.H. Jiang, Z.P. Lu, J. Mater. Sci 62(2021) 214-220. |
| [30] |
J. Su, D. Raabe, Z.M. Li, Acta Mater. 163(2019) 40-54.
DOI URL |
| [31] |
Z.M. Li, Acta Mater. 164(2019) 400-412.
DOI URL |
| [32] |
Z.M. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Sci. Rep. 7(2017) 40704.
DOI URL |
| [33] | Y. Han, H.B. Li, K.M. Li, Y.Z. Tian, Z.H. Jiang, J. Mater. Sci 65(2021) 210-215. |
| [34] |
S.V. Astafurov, G.G. Maier, I.A. Tumbusova, E.V. Melnikov, V.A. Moskvina, M.Y. Panchenko, A.I. Smirnov, N.K. Galchenko, E.G. Astafurova, Mater. Sci. Eng. A 770 (2020), 138534.
DOI URL |
| [35] |
P. Behjati, A. Kermanpur, A. Najafizadeh, H.S. Baghbadorani, L.P. Karjalainen, J.G. Jung, Y.K. Lee, Metall. Mater. Tran. A 45 (2014) 6317-6328.
DOI URL |
| [36] |
F. Xiong, R.D. Fu, Y.J. Li, D.L. Sang, J. Alloys Compd. 822(2020), 153512.
DOI URL |
| [37] |
D.R. Steinmetz, T. J鋚el, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, D. Raabe, Acta Mater. 61(2013)494-510.
DOI URL |
| [38] |
Z.F. He, N. Jia, H.W. Wang, Y. Liu, D.Y. Li, Y.F. Shen, Mater. Sci. Eng. A 776 (2020), 138982.
DOI URL |
| [39] |
W.Y. Zhang, D.S. Yan, W.J. Lu, Z.M. Li, J. Alloys Compd. 831(2020), 154799.
DOI URL |
| [40] |
T. Masumura, T. Tsuchiyama, S. Takaki, T. Koyano, K. Adachi, Scr. Mater. 154(2018) 8-11.
DOI URL |
| [41] |
Y.F. Shen, N. Jia, Y.D. Wang, X. Sun, L. Zuo, D. Raabe, Acta Mater. 97(2015) 305-315.
DOI URL |
| [42] |
S.L. Wong, M. Madivala, U. Prahl, F. Roters, D. Raabe, Acta Mater. 118(2016) 140-151.
DOI URL |
| [43] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81(2014) 428-441.
DOI URL |
| [44] |
S. Huang, W. Li, S. Lu, F.Y. Tian, J. Shen, E. Holmström, L. Vitos, Scr. Mater. 108(2015) 44-47.
DOI URL |
| [45] |
A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, JOM 65 (2013) 1780-1789.
DOI URL |
| [46] |
S.F. Liu, Y. Wu, H.T. Wang, W.T. Lin, Y.Y. Shang, J.B. Liu, K. An, X.J. Liu, H. Wang, Z.P. Lu, J. Alloys Compd. 792(2019) 444-455.
DOI URL |
| [47] |
K.S. Ming, X.F. Bi, J. Wang, Int. J. Plast. 113(2019) 255-268.
DOI URL |
| [48] | S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng.A 387-389(2004) 158-162. |
| [49] |
I. Lucks, P. Lamparter, E.J. Mittemeijer, J. Appl. Crystallogr. 37(2004) 300-311.
DOI URL |
| [50] | L. Tang, K. Yan, B. Cai, Y.Q. Wang, B. Liu, S. Kabra, M.M. Attallah, Y. Liu, Scr.Mater. 178(2020) 166-170. |
| [51] |
H. Kwon, J. Moon, J.W. Bae, J.M. Park, S. Son, H.S. Do, B.J. Lee, H.S. Kim, Scr. Mater. 188(2020) 140-145.
DOI URL |
| [52] |
M.V. Klimova, A.O. Semenyuk, D.G. Shaysultanov, G.A. Salishchev, S.V. Zherebtsov, N.D. Stepanov, J. Alloys Compd. 811(2019), 152000.
DOI URL |
| [53] |
B.B. Bian, N. Guo, H.J. Yang, R.P. Guo, L. Yang, Y.C. Wu, J.W. Qiao, J. Alloys Compd. 827(2020), 153981.
DOI URL |
| [54] |
Y.Q. Wang, B. Liu, K. Yan, M.S. Wang, S. Kabra, Y.L. Chiu, D. Dye, P.D. Lee, Y. Liu, B. Cai, Acta Mater. 154(2018) 79-89.
DOI URL |
| [55] |
D.Y. Li, Y. Zhang, Intermetallics 70 (2016) 24-28.
DOI URL |
| [56] |
W.T. Han, Y.C. Liu, F.R. Wan, P.P. Liu, X.O. Yi, Q. Zhan, D. Morrall, S. Ohnuki, J. Nucl. Mater. 504(2018) 29-32.
DOI URL |
| [57] |
S. Mahajan, G.Y. Chin, Acta Metall. 21(1973) 1353-1363.
DOI URL |
| [58] |
Y.M. Wang, M.W. Chen, F.H. Zhou, E. Ma, Nature 419 (2002)912-915.
DOI URL |
| [1] | Haoxue Yang, Jinshan Li, Xiangyu Pan, William Yi Wang, Hongchao Kou, Jun Wang. Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 1-7. |
| [2] | Bingqiang Wei, Song Ni, Yong Liu, Min Song. Structural characterization of the {11$\overline 2$2} twin boundary and the corresponding stress accommodation mechanisms in pure titanium [J]. J. Mater. Sci. Technol., 2021, 72(0): 114-121. |
| [3] | X.W. Liu, N. Gao, J. Zheng, Y. Wu, Y.Y. Zhao, Q. Chen, W. Zhou, S.Z. Pu, W.M. Jiang, Z.T. Fan. Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly thermostable in-situ precipitated carbides [J]. J. Mater. Sci. Technol., 2021, 72(0): 29-38. |
| [4] | Hongxia Wan, Dongdong Song, Xiaolei Shi, Yong Cai, Tingting Li, Changfeng Chen. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. J. Mater. Sci. Technol., 2021, 60(0): 197-205. |
| [5] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
| [6] | Chendong Zhao, Jinshan Li, Yudong Liu, Xiao Ma, Yujie Jin, William Yi Wang, Hongchao Kou, Jun Wang. Optimizing mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via FCC to BCC phase transformation [J]. J. Mater. Sci. Technol., 2021, 86(0): 117-126. |
| [7] | Yan Ma, Muxin Yang, Fuping Yuan, Xiaolei Wu. Deformation induced hcp nano-lamella and its size effect on the strengthening in a CoCrNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 82(0): 122-134. |
| [8] | Yujie Chen, Xianghai An, Sam Zhang, Feng Fang, Wenyi Huo, Paul Munroe, Zonghan Xie. Mechanical size effect of eutectic high entropy alloy: Effect of lamellar orientation [J]. J. Mater. Sci. Technol., 2021, 82(0): 10-20. |
| [9] | Hui Fu, Xiaoye Zhou, Bo Wu, Lei Qian, Xu-Sheng Yang. Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique [J]. J. Mater. Sci. Technol., 2021, 82(0): 227-238. |
| [10] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
| [11] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
| [12] | Ting Xiong, Wenfan Yang, Shijian Zheng, Zhaorui Liu, Yiping Lu, Ruifeng Zhang, Yangtao Zhou, Xiaohong Shao, Bo Zhang, Jun Wang, Fuxing Yin, Peter K. Liaw, Xiuliang Ma. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2021, 65(0): 216-227. |
| [13] | Muhammad Akmal, Ahtesham Hussain, Muhammad Afzal, Young Ik Lee, Ho Jin Ryu. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination [J]. J. Mater. Sci. Technol., 2021, 78(0): 183-191. |
| [14] | Wenyan Luo, Yunzhong Liu, Cheng Tu. Wetting behaviors and interfacial characteristics of molten AlxCoCrCuFeNi high-entropy alloys on a WC substrate [J]. J. Mater. Sci. Technol., 2021, 78(0): 192-201. |
| [15] | Tayyeb Ali, Lin Wang, Xingwang Cheng, Huanwu Cheng, Ying Yang, Anjin Liu, Xuefeng Xu, Zhe Zhou, Zixuan Ning, Ziqi Xu, Xinhua Min. Mechanical (compressive) form of driving force triggers the phase transformation from β to ω & α’’ phases in metastable β phase-field Ti-5553 alloy [J]. J. Mater. Sci. Technol., 2021, 78(0): 238-246. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
