J. Mater. Sci. Technol. ›› 2021, Vol. 90: 194-204.DOI: 10.1016/j.jmst.2021.03.023
• Research Article • Previous Articles Next Articles
Yin Dua, Xuhui Peia, Zhaowu Tangc, Fan Zhanga, Qing Zhoua,*(), Haifeng Wanga,*(
), Weimin Liua,b
Received:
2021-01-07
Revised:
2021-02-28
Accepted:
2021-03-04
Published:
2021-11-05
Online:
2021-11-05
Contact:
Qing Zhou,Haifeng Wang
About author:
haifengw81@nwpu.edu.cn (H. Wang).Yin Du, Xuhui Pei, Zhaowu Tang, Fan Zhang, Qing Zhou, Haifeng Wang, Weimin Liu. Mechanical and tribological performance of CoCrNiHfx eutectic medium-entropy alloys[J]. J. Mater. Sci. Technol., 2021, 90: 194-204.
Fig. 2. Representative back-scattered electron microscopy images of the CoCrNiHfx medium-entropy alloys (x?=?0, 0.1, 0.2, 0.3 and 0.4). (a) Microstructure of a single FCC phase for Hf0 alloy. (b) Primary FCC phase and secondary lamellar eutectics for Hf0.1 alloy. (c) Primary FCC phase and secondary lamellar eutectics for Hf0.2 alloy. (d) Homogeneous lamellar eutectics for Hf0.3 alloy. (e) Primary Laves phase and secondary lamellar eutectics for Hf0.4 alloy. (f) Volume fraction of lamellar eutectics as a function of the addition of Hf. (g) Average lamellar eutectic spacing as a function of the addition of Hf. Inset of Fig. 2(b) shows the definition of lamellar eutectic spacing.
Fig. 3. (a) Transmission electron microscope images of the lamellar eutectics and the corresponding selected area electron diffraction (SAED) patterns of the Laves phase and the FCC phase for the Hf0.3 alloy. (b) Energy-dispersive X-ray spectroscopy (EDS) elemental mappings of the lamellar eutectics.
Samples | Microstructure | Mechanical properties | ||
---|---|---|---|---|
Hmicro (GPa) | σy (MPa) | εu (%) | ||
Hf0 | FCC | 3.12 ± 0.24 | 161.2 ± 5.1 | 61±0.2 |
Hf0.1 | FCC+Eutectic Lamellar | 4.06 ± 0.26 | 429.6 ± 19.5 | 54.4 ± 0.3 |
Hf0.2 | FCC+Eutectic Lamellar | 4.78 ± 0.26 | 630.9 ± 17.4 | 33.5 ± 1.2 |
Hf0.3 | Eutectic Lamellar | 5.66 ± 0.27 | 907.8 ± 10.2 | 32.6 ± 1.6 |
Hf0.4 | Laves+Eutectic Lamellar | 8.23 ± 0.35 | 990.5 ± 31.8 | 15.9 ± 2.8 |
Table 1 The microstructures and mechanical properties (e.g., micro-hardness (Hmicro), yielding strength (σy) and fracture strain (εu)) of the CoCrNiHfx eutectic medium-entropy alloys (x?=?0, 0.1, 0.2, 0.3 and 0.4).
Samples | Microstructure | Mechanical properties | ||
---|---|---|---|---|
Hmicro (GPa) | σy (MPa) | εu (%) | ||
Hf0 | FCC | 3.12 ± 0.24 | 161.2 ± 5.1 | 61±0.2 |
Hf0.1 | FCC+Eutectic Lamellar | 4.06 ± 0.26 | 429.6 ± 19.5 | 54.4 ± 0.3 |
Hf0.2 | FCC+Eutectic Lamellar | 4.78 ± 0.26 | 630.9 ± 17.4 | 33.5 ± 1.2 |
Hf0.3 | Eutectic Lamellar | 5.66 ± 0.27 | 907.8 ± 10.2 | 32.6 ± 1.6 |
Hf0.4 | Laves+Eutectic Lamellar | 8.23 ± 0.35 | 990.5 ± 31.8 | 15.9 ± 2.8 |
Fig. 6. Wear characteristics of the CoCrNiHfx eutectic medium-entropy alloys (x?=?0.2, 0.3 and 0.4) upon a dry sliding test against a commercial ball of Al2O3 under an applied normal load of 10?N. (a) 3D surface profiles of the wear track. (b) Coefficient of friction as a function of the sliding distance. (c) Cross-section profiles of the wear track along the dotted line in (a). (d) Wear volumes of the wear tracks for different alloys.
Fig. 7. Wear characteristics of the CoCrNiHfx eutectic medium-entropy alloys (x?=?0.2, 0.3 and 0.4) upon a dry sliding test against a commercial ball of Al2O3 under an applied normal load of 30?N. (a) 3D surface profiles of the wear track. (b) Coefficient of friction as a function of the sliding distance. (c) Cross-section profiles of the wear tracks along the dotted line in (a). (d) Wear volumes of the wear tracks for different alloys.
Fig. 8. SEM images of the worn surfaces of the CoCrNiHfx eutectic medium-entropy alloys (x?=?0.2, 0.3 and 0.4) upon a dry sliding test against a commercial ball of Al2O3 under an applied normal load of 10 N: (a) Hf0.2 hypoeutectic alloy, (b) Hf0.3 eutectic alloy, (c) Hf0.4 hypereutectic alloy.
Fig. 9. SEM images of the worn surfaces of the CoCrNiHfx eutectic medium-entropy alloys (x?=?0.2, 0.3 and 0.4) upon a dry sliding test against a commercial ball of Al2O3 under an applied normal load of 30 N: (a) Hf0.2 hypoeutectic alloy; (b) Hf0.3 eutectic alloy; (c) Hf0.4 hypereutectic alloy. SEM magnified image of the worn surfaces: (a1) Hf0.2 hypoeutectic alloy, (b1) Hf0.3 eutectic alloy, (c1) Hf0.4 hypereutectic alloy.
Load (N) | Alloys | Point | Co | Cr | Ni | Hf | O |
---|---|---|---|---|---|---|---|
10 | Hf0.2 | 1 | 22.47 | 22.27 | 21.23 | 4.62 | 29.41 |
Hf0.3 | 2 | 25.31 | 25.25 | 27.71 | 6.85 | 14.88 | |
Hf0.4 | 3 | 25.46 | 23.57 | 22.19 | 10.51 | 18.27 | |
30 | Hf0.2 | 4 | 20.89 | 21.39 | 6.78 | 4.12 | 46.82 |
Hf0.3 | 5 | 19.00 | 20.52 | 19.86 | 5.77 | 26.63 | |
Hf0.4 | 6 | 10.42 | 10.97 | 13.19 | 8.87 | 56.55 |
Table 2 Chemical compositions (at.%) of the marked area on the worn surfaces of the CoCrNiHfx eutectic medium-entropy alloys (x?=?0.2, 0.3 and 0.4) upon dry sliding tests against a commercial ball of Al2O3 under an applied normal load of 10?N and 30?N.
Load (N) | Alloys | Point | Co | Cr | Ni | Hf | O |
---|---|---|---|---|---|---|---|
10 | Hf0.2 | 1 | 22.47 | 22.27 | 21.23 | 4.62 | 29.41 |
Hf0.3 | 2 | 25.31 | 25.25 | 27.71 | 6.85 | 14.88 | |
Hf0.4 | 3 | 25.46 | 23.57 | 22.19 | 10.51 | 18.27 | |
30 | Hf0.2 | 4 | 20.89 | 21.39 | 6.78 | 4.12 | 46.82 |
Hf0.3 | 5 | 19.00 | 20.52 | 19.86 | 5.77 | 26.63 | |
Hf0.4 | 6 | 10.42 | 10.97 | 13.19 | 8.87 | 56.55 |
Fig. 10. Representative load-displacement curves with a fixed peak-load of 10 mN and different strain rates for the (a) primary FCC phase, (b) primary Laves phase, and (c) lamellar eutectic. (d) A double logarithmic plot of the nano-hardness and the strain rates under a peak-load of 10 mN.
Structure | Hmicro (GPa) | Hnano (GPa) | m | V* (b3) |
---|---|---|---|---|
FCC | 3.12±0.04 | 3.25±0.12 ($\dot \varepsilon$=0.01) | 0.0571 | 7.5 |
3.56±0.19 ($\dot \varepsilon$=0.05) | ||||
3.76±0.15 ($\dot \varepsilon$=0.1) | ||||
4.05±0.18 ($\dot \varepsilon$=0.5) | ||||
Laves | 8.22±0.10 | 8.80±0.12 ($\dot \varepsilon$=0.01) | 0.0007 | 231 |
8.81±0.12 ($\dot \varepsilon$=0.05) | ||||
8.82±0.15 ($\dot \varepsilon$=0.1) | ||||
8.83±0.18 ($\dot \varepsilon$=0.5) | ||||
Eutectic Lamellar | 5.65±0.07 | 5.36±0.10 ($\dot \varepsilon$=0.01) | 0.0175 | 13.5 |
5.53±0.15 ($\dot \varepsilon$=0.05) | ||||
5.60±0.13 ($\dot \varepsilon$=0.1) | ||||
5.74±0.07 ($\dot \varepsilon$=0.5) |
Table 3 The measured micro-hardness (Hmicro), nano-hardness (Hnano), strain rate sensitivity (m), activation volume V* (b3) of the primary FCC phase, lamellar eutectic and primary Laves phase at room temperature.
Structure | Hmicro (GPa) | Hnano (GPa) | m | V* (b3) |
---|---|---|---|---|
FCC | 3.12±0.04 | 3.25±0.12 ($\dot \varepsilon$=0.01) | 0.0571 | 7.5 |
3.56±0.19 ($\dot \varepsilon$=0.05) | ||||
3.76±0.15 ($\dot \varepsilon$=0.1) | ||||
4.05±0.18 ($\dot \varepsilon$=0.5) | ||||
Laves | 8.22±0.10 | 8.80±0.12 ($\dot \varepsilon$=0.01) | 0.0007 | 231 |
8.81±0.12 ($\dot \varepsilon$=0.05) | ||||
8.82±0.15 ($\dot \varepsilon$=0.1) | ||||
8.83±0.18 ($\dot \varepsilon$=0.5) | ||||
Eutectic Lamellar | 5.65±0.07 | 5.36±0.10 ($\dot \varepsilon$=0.01) | 0.0175 | 13.5 |
5.53±0.15 ($\dot \varepsilon$=0.05) | ||||
5.60±0.13 ($\dot \varepsilon$=0.1) | ||||
5.74±0.07 ($\dot \varepsilon$=0.5) |
Fig. 11. XPS spectra of the individual elements on the worn surfaces of the CoCrNiHfx eutectic medium-entropy alloys (x?=?0.2, 0.3 and 0.4) after a dry sliding test against a commercial ball of Al2O3 under an applied normal load of 10 N: (a) Co element, (b) Cr element, (c) Ni element, (d) Hf element.
Fig. 12. XPS spectra of the individual elements on the worn surfaces of the CoCrNiHfx eutectic medium-entropy alloys (x?=?0.2, 0.3 and 0.4) after a dry sliding test against a commercial ball of Al2O3 under an applied normal load of 30 N: (a) Co element, (b) Cr element, (c) Ni element, (d) Hf element.
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[2] |
Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Nature 563 (2018) 546-550.
DOI URL |
[3] |
O.N. Senkov, J.D. Miller, D.B. Miracle, C. Woodward, Nat. Commun. 6 (2015) 6529.
DOI PMID |
[4] |
W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Intermetallics 60 (2015) 1-8.
DOI URL |
[5] |
Y.X. Wang, Y.J. Yang, H.J. Yang, M. Zhang, J.W. Qiao, J. Alloys Compd. 725 (2017) 365-372.
DOI URL |
[6] |
Z.B. An, S.C. Mao, Y.N. Liu, H. Zhou, B. Gan, Z. Zhang, X.D. Han, J. Mater. Sci. Technol. 79 (2021) 109-117.
DOI URL |
[7] |
J. Joseph, N. Haghdadi, M. Annasamy, S. Kada, P.D. Hodgson, M.R. Barnett, D. M. Fabijanic, Scr. Mater. 186 (2020) 230-235.
DOI URL |
[8] |
L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, J.W. Qiao, J. Mater. Sci. Technol. 35 (2019) 917-925.
DOI |
[9] |
Y. Cui, J.Q. Shen, S.M. Manladan, K.P. Geng, S.S. Hu, Appl. Surf. Sci. 512 (2020) 145736.
DOI URL |
[10] |
J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, M. Barnett, D. Fabijanic, Wear 428- 429 (2019) 32-44.
DOI URL |
[11] | X.F. Yao, J.P. Wei, Y.K. Lv, T.Y. Li, Acta Metall. Sin. 56 (2020) 769-775 (in Chi- nese). |
[12] |
Y.F. Zhao, Y.Q. Wang, K. Wu, J.Y. Zhang, G. Liu, J. Sun, Scr. Mater. 154 (2018) 154-158.
DOI URL |
[13] | W. Ding, X.J. Wang, N. Liu, L. Qin, Acta Metall. Sin. 56 (2020) 1084-1090 (in Chinese). |
[14] | M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, High- entropy Alloys: Fundamentals and Applications, Springer International Press, Switzerland, 2016. |
[15] |
B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H.B. Bei, Z.G. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7 (2016) 10602.
DOI PMID |
[16] |
S.S. Sohn, A.K. Silva, Y. Ikeda, F. Körmann, W.J. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Adv. Mater. 31 (2018) 1807142.
DOI URL |
[17] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater. 128 (2017) 292-303.
DOI URL |
[18] | S. Pan, C.C. Zhao, P.B. Wei, F.Z. Ren, Wear 440 (2019) 203108. |
[19] |
J.F. Archard, J. Appl. Phys. 24 (1953) 981-988.
DOI URL |
[20] | Y.S. Geng, H. Tan, J. Cheng, J. Chen, Q.C. Sun, S.Y. Zhu, J. Yang, Tribol. Int. 151 (2020) 1064 4 4. |
[21] |
Q. Zhou, Y. Ren, Y. Du, W.C. Han, D.P. Hua, H.M. Zhai, P. Huang, F. Wang, H.F. Wang, J. Alloys Compd. 780 (2019) 671-679.
DOI URL |
[22] |
J. Guo, S.H. Joo, D.H. Pi, X.H. Zhang, X.R. Zhang, M. Abdelaal, Y.P. Song, H.S. Kim, Tribol. Lett. 65 (2017) 62.
DOI URL |
[23] |
Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li, Sci. Rep. 4 (2014) 6200.
DOI URL |
[24] |
Y. Yu, F. He, Z.H. Qiao, Z.J. Wang, W.M. Liu, J. Yang, J. Alloys Compd. 775 (2019) 1376-1385.
DOI URL |
[25] |
Z.Y. Ding, Q.F. He, Q. Wang, Y. Yang, Int. J. Plast. 106 (2018) 57-72.
DOI URL |
[26] |
F. He, Z.J. Wang, P. Cheng, Q. Wang, J.J. Li, Y.Y. Dang, J.C. Wang, C.T. Liu, J. Alloys Compd. 656 (2016) 284-289.
DOI URL |
[27] |
A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817-2829.
DOI URL |
[28] |
A.I. Taub, R.L. Fleischer, Science 243 (1989) 616-621.
PMID |
[29] |
M. Ardeljan, M. Knezevic, T. Nizolek, I.J. Beyerlein, N.A. Mara, T.M. Pollock, Int. J. Plast. 74 (2015) 35-57.
DOI URL |
[30] |
X.X. Li, Y. Zhou, X.L. Ji, Y.X. Li, S.Q. Wang, Tribol. Int. 91 (2015) 228-234.
DOI URL |
[31] |
H. Torres, M. Varga, K. Adam, M.R. Ripoll, Wear 364- 365 (2016) 73-83.
DOI URL |
[32] |
G.Y. Deng, A.K. Tieu, X.D. Lan, L.H. Su, L. Wang, Q. Zhu, H.T. Zhu, Tribol. Int. 144 (2020) 106116.
DOI URL |
[33] |
M. Chen, L.W. Lan, X.H. Shi, H.J. Yang, M. Zhang, J.W. Qiao, J. Alloys Compd. 777 (2019) 180-189.
DOI URL |
[34] |
Y.S. Su, S.X. Li, Q.Y. Gao, H. Jiang, S.Y. Lu, F. Yu, X.D. Shu, Tribol. Int. 140 (2019) 105846.
DOI URL |
[35] |
W.W. Zhu, C.C. Zhao, Y.W. Zhang, C.T. Kwok, J.H. Luan, Z.B. Jiao, F.Z. Ren, Acta Mater 188 (2020) 697-710.
DOI URL |
[36] |
J.F. Yan, A. Lindo, R. Schwaiger, A.M. Hodge, Friction 7 (2019) 260-267.
DOI URL |
[37] | H. Zhong, J. Chen, L.Y. Dai, Y. Yue, B.A. Wang, X.Y. Zhang, M.Z. Ma, R.P. Liu, Wear 346 (2016) 22-28. |
[38] |
Y. Du, Q. Zhou, Q. Jia, Y.D. Shi, H.F. Wang, J. Wang, Mater. Res. Lett. 8 (2020) 357-363.
DOI URL |
[39] |
Q. Zhou, Y. Du, W.C. Han, Y. Ren, H.M. Zhai, H.F. Wang, Scr. Mater. 164 (2019) 121-125.
DOI URL |
[40] |
Y. Du, W.C. Han, Q. Zhou, Y.H. Xu, H.M. Zhai, V. Bhardwaj, H.F. Wang, J. Alloys Compd. 835 (2020) 155247.
DOI URL |
[41] |
Y. Du, Q. Zhou, Y. Ren, W.W. Kuang, W.C. Han, S. Zhang, H.M. Zhai, H.F. Wang, J. Alloys Compd. 762 (2018) 422-430.
DOI URL |
[42] |
R.B. Figueiredo, S. Sabbagahianard, A. Giwa, J.R. Greer, T.G. Langdon, Acta Mater. 122 (2017) 322-331.
DOI URL |
[43] |
Z. Sun, S. Van Petegem, A. Cervellino, K. Durst, W. Blum, H. Van Swygenhoven, Acta Mater. 91 (2015) 91-100.
DOI URL |
[44] |
T. Maity, B. Roy, J. Das, Acta Mater. 97 (2015) 170-179.
DOI URL |
[45] |
W.L. Johnson, K. Samwer, Phys. Rev. Lett. 95 (2005) 195501.
PMID |
[46] |
T. Maity, K.G. Prashanth, O. Balci, Z. Wang, Y.D. Jia, J. Eckert, Compos. Part. B- Eng. 150 (2018) 7-13.
DOI URL |
[47] |
Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, T.J. Li, Acta Mater. 124 (2017) 143-150.
DOI URL |
[48] |
Y.J. Chena, X.H. An, S. Zhang, F. Fang, W.Y. Huo, P. Munroee, Z.H. Xie, J. Mater. Sci. Technol. 82 (2021) 10-20.
DOI URL |
[49] |
J. Zhang, X. Zhang, R. Wang, S. Lei, P. Zhang, J. Niu, G. Liu, G. Zhang, J. Sun, Acta Mater. 59 (2011) 7368-7379.
DOI URL |
[50] |
Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[51] | R.W. Hertzberg, New York, 1989. |
[52] |
Z.Y. Ding, Q.F. He, D. Chung, Y. Yang, Scr. Mater. 187 (2020) 280-284.
DOI URL |
[53] |
Q. Zhou, S. Zhang, X.Z. Wei, F. Wang, P. Huang, K.W. Xu, J. Alloys Compd. 742 (2018) 45-53.
DOI URL |
[54] |
M.J. Demkowicz, I.J. Beyerlein, Scr. Mater. 187 (2020) 130-136.
DOI URL |
[55] | X. Chen, Z. Han, X.Y. Li, K. Lu, Sci. Adv. 2 (2016) 1601942. |
[56] | F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids, Clarendon Press, Oxford, 1964. |
[57] | E. Rabinowicz, Friction Wear of Materials, Wiley Press, New York, 1965. |
[58] |
Z.L. Liu, C. Patzig, S. Selle, T. Hoche, P. Gumbsch, C. Greiner, Scr. Mater. 153 (2018) 114-117.
DOI URL |
[59] |
X.Y. Fu, M.L. Falk, D.A. Rigney, Wear 250 (2001) 420-430.
DOI URL |
[60] |
D. Ghosh, G. Subhash, R. Radhakrishnan, T.S. Sudarshan, Acta Mater. 56 (2008) 3011-3022.
DOI URL |
[61] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[1] | Mattia Biesuz, Theo Saunders, Daoyao Ke, Michael J. Reece, Chungfeng Hu, Salvatore Grasso. A review of electromagnetic processing of materials (EPM): Heating, sintering, joining and forming [J]. J. Mater. Sci. Technol., 2021, 69(0): 239-272. |
[2] | Jinhu Zhang, Xuexiong Li, Dongsheng Xu, Chunyu Teng, Hao Wang, Liang Yang, Hongtao Ju, Haisheng Xu, Zhichao Meng, Yingjie Ma, Yunzhi Wang, Rui Yang. Phase field simulation of the stress-induced α microstructure in Ti-6Al-4 V alloy and its CPFEM properties evaluation [J]. J. Mater. Sci. Technol., 2021, 90(0): 168-182. |
[3] | Dae Cheol Yang, Yong Hee Jo, Yuji Ikeda, Fritz Körmann, Seok Su Sohn. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90(0): 159-167. |
[4] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[5] | Jiayi Zhang, Yan Jin Lee, Hao Wang. Mechanochemical effect on the microstructure and mechanical properties in ultraprecision machining of AA6061 alloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 228-238. |
[6] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[7] | Jing Zhou, Siyi Di, Baoan Sun, Qiaoshi Zeng, Baolong Shen. Correlation between deformation behavior and atomic-scale heterogeneity in Fe-based bulk metallic glasses [J]. J. Mater. Sci. Technol., 2021, 65(0): 54-60. |
[8] | Muhammad Akmal, Ahtesham Hussain, Muhammad Afzal, Young Ik Lee, Ho Jin Ryu. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination [J]. J. Mater. Sci. Technol., 2021, 78(0): 183-191. |
[9] | Tukaram D. Dongale, Atul C. Khot, Ashkan V. Takaloo, Kyung Rock Son, Tae Geun Kim. Multilevel resistive switching and synaptic plasticity of nanoparticulated cobaltite oxide memristive device [J]. J. Mater. Sci. Technol., 2021, 78(0): 81-91. |
[10] | Pan Xie, Shucheng Shen, Cuilan Wu, Jiehua Li, Jianghua Chen. Unusual relationship between impact toughness and grain size in a high-manganese steel [J]. J. Mater. Sci. Technol., 2021, 89(0): 122-132. |
[11] | Hui Liang, Dongxu Qiao, Junwei Miao, Zhiqiang Cao, Hui Jiang, Tongmin Wang. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater [J]. J. Mater. Sci. Technol., 2021, 85(0): 224-234. |
[12] | D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping [J]. J. Mater. Sci. Technol., 2021, 87(0): 184-195. |
[13] | J.W. Liang, Y.F. Shen, R.D.K. Misra, P.K. Liaw. High strength-superplasticity combination of ultrafine-grained ferritic steel: The significant role of nanoscale carbides [J]. J. Mater. Sci. Technol., 2021, 83(0): 131-144. |
[14] | Yang Bao, Lujun Huang, Shan Jiang, Rui Zhang, Qi An, Caiwei Zhang, Lin Geng, Xinxin Ma. A novel Ti cored wire developed for wire-feed arc deposition of TiB/Ti composite coating [J]. J. Mater. Sci. Technol., 2021, 83(0): 145-160. |
[15] | Y.L. Qi, L. Zhao, X. Sun, H.X. Zong, X.D. Ding, F. Jiang, H.L. Zhang, Y.K. Wu, L. He, F. Liu, S.B. Jin, G. Sha, J. Sun. Enhanced mechanical performance of grain boundary precipitation-hardened high-entropy alloys via a phase transformation at grain boundaries [J]. J. Mater. Sci. Technol., 2021, 86(0): 271-284. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||