J. Mater. Sci. Technol. ›› 2021, Vol. 86: 271-284.DOI: 10.1016/j.jmst.2021.01.061
• Research Article • Previous Articles
Y.L. Qia, L. Zhaoa, X. Suna, H.X. Zonga, X.D. Dinga, F. Jianga,*(), H.L. Zhanga, Y.K. Wua, L. Hea, F. Liub,*(
), S.B. Jinc, G. Shac, J. Suna,*(
)
Received:
2020-12-15
Accepted:
2021-01-11
Published:
2021-09-30
Online:
2021-09-24
Contact:
F. Jiang,F. Liu,J. Sun
About author:
junsun@mail.xjtu.edu.cn (J. Sun).Y.L. Qi, L. Zhao, X. Sun, H.X. Zong, X.D. Ding, F. Jiang, H.L. Zhang, Y.K. Wu, L. He, F. Liu, S.B. Jin, G. Sha, J. Sun. Enhanced mechanical performance of grain boundary precipitation-hardened high-entropy alloys via a phase transformation at grain boundaries[J]. J. Mater. Sci. Technol., 2021, 86: 271-284.
Fig. 1. Schematic of the novel strategy of using local stress concentration-induced phase transformation at grain boundaries (GBs). (a) GB regions with precipitates are prone to initiating cracks due to the local stress concentration induced by GB precipitates. (b) The proposed strategy of using this local stress concentration to trigger a phase transformation of the second phase preseted at GBs, providing additional transformation-induced plasticity (TRIP).
Fig. 2. Exceptional combination of strength and ductility achieved by the CR-Ti5Al5 alloy at room temperature. (a) Engineering stress-engineering strain curves of the Ti5Al5 alloy samples (NCR-Ti5Al5, CR-Ti5Al5-1, and CR-Ti5Al5-2). The insert shows the corresponding true stress and work-hardening rate curves as a function of true strain. (b) Yield strength (YS) versus the product of strength and elongation of the designed Ti5Al5 HEA compared with those of other high-performing FeCoNiCr-based HEAs [7,8,10,11,39,[43], [44], [45], [46]].
Fig. 3. Comparison of fracture surfaces between the NCR-Ti5Al5 and the CR-Ti5Al5 alloys. (a, b) Fracture surface of the NCR-Ti5Al5 sample at different magnifications, exhibiting notably deep and large dimples. (c, d) Fracture surface of the CR-Ti5Al5 sample at different magnifications, showing fine and uniformly distributed dimples.
Fig. 4. Typical microscopic structure of the undeformed CR-Ti5Al5 HEA. (a) A STEM-HAADF image showing a unique four-phase structure: bcc Heusler precipitates and Cr-rich bcc phase in the GB region, and fcc matrix and fcc L12 nanoprecipitates in the grain interior. (b) STEM-EDS maps revealing the qualitatively elemental distribution among the four phases in the alloy, confirming the presence of the Cr-rich phase. (c-e) SAED patterns of c the Cr-depleted bcc Heusler precipitate, (d) the disordered Cr-rich bcc phase, and e the disordered fcc matrix containing Cr-depleted L12 nanoprecipitates. (f) High-resolution SEM image showing the morphology of the three phases: Heusler particles (blue arrows), L12 particles (red arrows), and Cr-rich phase (green arrows) in the alloys. (g-j) Atomic-scale analyses using atom probe tomography (APT). (g) Three-dimensional (3D) reconstruction of the 45 at.% Cr and 12 at.% Ni isoconcentration surfaces presenting the morphologies of the Cr-rich phase and its neighboring matrix. (h) One-dimensional (1D) concentration profile quantitatively showing the chemical composition of the Cr-rich phase and its neighboring matrix. (i) 3D reconstruction of the 35 at.% Ni isoconcentration surfaces revealing the morphology of the L12 nanoprecipitates in the matrix. The number density and average diameter of the L12 nanoprecipitates were 4.79 × 1023 m-3 and ~5.9 nm, respectively. (j) 1D concentration profile quantitatively showing the chemical composition of the L12 nanoprecipitates and the matrix.
Fig. 7. Nanoindentation hardness of the Cr-rich region, Heusler precipitate region, and matrix region containing L12 particles in CR-Ti5Al5, showing that the hardness of the Cr-rich bcc region is the smallest one among the three regions.
Fig. 8. Tensile deformation mechanisms in the CR-Ti5Al5 HEA at room temperature. (a) Bright-field TEM images at a tensile strain of 5% showing interaction of the Cr-rich phase and Heusler particles. A considerable number of dislocations (white arrows) pile up at the interface between the Cr-rich phase and the Heusler particles, indicating a severe local stress concentration. (b-g) Representative TEM-EDS images after tensile fracture showing the Cr-rich phase undergoing a stress-induced phase transformation from the original bcc to hcp structure. (b) STEM-HAADF image showing a typical deformed microstructure containing Heusler particles, microvoids (red circles), the Cr-rich hcp phase, and stacking faults (SFs, yellow arrows). (c) Qualitative STEM-EDS showing the elemental distribution corresponding to (b). (d), (e) Microdiffraction patterns of the Heusler and Cr-rich hcp phases, respectively. (f) Interface between the L21 and Cr-rich hcp phases showing a clear dislocation wall (the region outlined by red dotted lines). (g) Interface (red dotted line) between the Cr-rich hcp phase and fcc matrix.
Fig. 9. TEM-EDS images showing more information about the Cr-rich hcp phase in the CR-Ti5Al5 HEA after tensile deformation. (a) STEM image exhibiting the interdependent distribution of the Heusler and hcp phases. (b) Qualitative EDS showing the elemental distribution of Cr, Fe, Co, Al, Ti, and Ni in the CR-Ti5Al5 HEA, identifying the locations of the Cr-rich HCP phase and Heusler particles (enriched in Ni, Al, and Ti) corresponding to (a). The volume fraction of the Cr-rich hcp phase was estimated to be ~2.9 %. (c) Typical HRTEM image of the Cr-rich hcp phase and its corresponding FFT, further confirming the bcc to hcp phase transformation of the Cr-rich phase.
Fig. 10. Statistical results of the diameter and volume fraction of the L12 precipitates, Heusler precipitates, and matrix in CR-Ti5Al5 and NCR-Ti5Al5: (a) size data and (b) volume fraction data.
Fig. 11. Considerably inhomogeneous partitioning of all elements among the four phases (L12, Heusler, Cr-rich, and matrix) in CR-Ti5Al5 according to APT data, showing that there was a relatively low Cr concentration in both the L12 and Heusler precipitates.
Fig. 12. Equations of state of Cr and non-equiatomic Cr51Fe25Co18Ni6 in bcc and hcp structures at ground state. (a) The comparison of total energy as a function of volume between bcc Cr and hcp Cr, revealing that the total energy of hcp Cr is much higher than that of bcc Cr. (b) The comparison of total energy as a function of volume between bcc Cr51Fe25Co18Ni6 and hcp Cr51Fe25Co18Ni6, revealing that the total energy of hcp Cr51Fe25Co18Ni6 is higher than that of bcc Cr51Fe25Co18Ni6 at large volume conditions, but is slightly lower at small volume conditions (i.e., corresponding to higher condition pressure).
Fig. 13. Work-hardening rate as a function of true stress, showing that the estimated Cr-rich phase transformation critical stress (denoted by σtrans) was approximately 1258-1284 MPa according to the first inflection points in the two work-hardening rate curves.
Fig. 14. Yield strength contributions from different hardening mechanisms in the CR-Ti5Al5 alloy. The calculated values agree well with the experimental data.
Fig. 15. Yield strength contributions from different hardening mechanisms in the NCR-Ti5Al5 alloy. The calculated values agree well with the experimental data.
Fig. 16. MD simulations of Cr-rich phase strengthened FeCoNiCr HEA polycrystal. (a) Cross-section view of the FeCoNiCr HEA polycrystal. The embedded zone has a core-shell structure of Ni6Co18Fe25Cr51 bcc phase. The atoms with fcc and bcc local structure are colored by green and blue, receptivity. (b) The true stress-strain curve upon tensile loading. The labels of (a, b, c, d, e, f) marks the strain under which the snapshots are collected for microstructural analysis. The insert is the corresponding work-hardening rate curves as a function of true strain.
Fig. 19. Microstructural evolution of the Cr-rich phase strengthened FeCoNiCr HEA during the tensile deformation. (a-f) show the microstructures corresponding to the six points (a, b, c, d, e, f) labeled in the strain-stress curve of Fig. 16(b). The atoms with fcc, bcc and hcp local structure are colored by green, blue and orange, receptivity. Our MD simulations indicated that the occurrence of stress-induced bcc→hcp transformation within the Cr-rich phase.
[1] | J.H. Hwang, T.T.T. Trang, O. Lee, G. Park, A. Zargaran, N.J. Kim, Acta Mater. 191(2020) 112. |
[2] |
G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nat. Mater. 12(2013) 344-350.
DOI PMID |
[3] |
D. Choudhuri, B. Gwalani, S. Gorsse, M. Komarasamy, S.A. Mantri, S.G. Srinivasan, R.S. Mishra, R. Banerjee, Acta Mater. 165(2019) 420-430.
DOI |
[4] |
J.Y. He, H. Wang, Y. Wu, X.J. Liu, H.H. Mao, T.G. Nieh, Z.P. Lu, Intermetallics 79 (2016) 41-52.
DOI URL |
[5] |
A. Pineau, A.A. Benzerga, T. Pardoen, Acta Mater. 107(2016) 424-483.
DOI URL |
[6] |
K.S. Ming, X.F. Bi, J. Wang, Int. J. Plast. 100(2018) 177-191.
DOI URL |
[7] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102(2016) 187-196.
DOI URL |
[8] |
F. He, D. Chen, B. Han, Q.F. Wu, Z.J. Wang, S.L. Wei, D.X. Wei, J.C. Wang, C.T. Liu, J.J. Kai, Acta Mater. 167(2019) 275-286.
DOI URL |
[9] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science 362 (2018) 933-937.
DOI PMID |
[10] |
Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Acta Mater. 165(2019) 228-240.
DOI |
[11] |
Z.G. Wang, W. Zhou, L.M. Fu, J.F. Wang, R.C. Luo, X.C. Han, B. Chen, X.D. Wang, Mater. Sci. Eng. A 696 (2017) 503-510.
DOI URL |
[12] |
Y.L. Qi, Y.K. Wu, T.H. Cao, L. He, F. Jiang, J. Sun, Mater. Sci. Eng. A 797 (2020), 140056.
DOI URL |
[13] | F. Liu, K. Wang, Acta Metall. Sin. 52 (010) (2016) 1326-1332, in Chinese. |
[14] |
H.A. Rauch, Y. Chen, K. An, H.Z. Yu, Acta Mater. 168(2019) 362-375.
DOI URL |
[15] |
P.E. Reyes-Morel, J.S. Cherng, I.W. Chen, J. Am. Ceram. Soc. 71(1988) 648-657.
DOI URL |
[16] | J. Zhang, Y. Sun, Z. Ji, H. Luo, F. Liu, J. Mater. Sci 75(2021) 139-153. |
[17] |
L. Liu, Q. Yu, Z. Wang, J. Ell, M.X. Huang, R.O. Ritchie, Science 368 (2020) 1347-1352.
DOI PMID |
[18] |
X.L. Wu, M.X. Yang, F.P. Yuan, L. Chen, Y.T. Zhu, Acta Mater. 112(2016) 337-346.
DOI URL |
[19] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122(2017) 448-511.
DOI URL |
[20] |
J.A. Moriarty, Phys. Rev. B 45 (1991) 2004-2014.
DOI URL |
[21] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[22] | H.L. Huang, Y. Wu, J.Y. He, H. Wang, X.J. Liu, K. An, W. Wu, Z.P. Lu, Adv. Mater. 29(2017) 1-7. |
[23] | Y.L. Qi, T.H. Cao, H.X. Zong, Y.K. Wu, L. He, X.D. Ding, F. Jiang, S.B. Jin, G. Sha, J. Sun, J. Mater. Sci 75(2021) 154-163. |
[24] |
F. Otto, A. Dlouh′y, K.G. Pradeep, M. Kubenova, D. Raabe, G. Eggeler, E.P. George, Acta Mater. 112(2016) 40-52.
DOI URL |
[25] |
Y.J. Liang, L.J. Wang, Y.R. Wen, B.Y. Cheng, Q.L. Wu, T.Q. Cao, Q. Xiao, Y.F. Xue, G. Sha, Y.D. Wang, Y. Ren, X.Y. Li, L. Wang, F.C. Wang, H.N. Cai, Nat. Commun. 9(2018) 4063.
DOI URL |
[26] |
L. Vitos, Phys. Rev. B 64 (2001), 014107.
DOI URL |
[27] | L. Vitos, The EMTO Method and Applications, in: Computational Quantum Mechanicals for Materials Engineers, Springer-Verlag, London, 2007. |
[28] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868.
PMID |
[29] |
B.L. Gyorffy, A.J. Pindor, J. Staunton, G.M. Stocks, H. Winter. J. Phys. F: Met. Phys. 15(1985) 1337.
DOI URL |
[30] |
H.L. Zhang, X. Sun, S. Lu, Z.H. Dong, X.D. Ding, Y.Z. Wang, L. Vitos, Acta Mater. 155(2018) 12-22.
DOI URL |
[31] |
W.M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, B.J. Lee, NPJ Comput. Mater. 4(2018) 1-9.
DOI URL |
[32] |
D.J. Evans, B.L. Holian, J. Chem. Phys. 83(1985) 4069-4075.
DOI URL |
[33] |
D. Faken, H. Jónsson, Comput. Mater. Sci. 2(1994) 279-286.
DOI URL |
[34] |
J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91(1987) 4950-4963.
DOI URL |
[35] |
E. Ma, T. Zhu, Mater. Today 20 (2017) 323-331.
DOI URL |
[36] |
X.L. Wu, Y.T. Zhu, Mater. Res. Lett. 5(2017) 527-532.
DOI URL |
[37] |
P.M. Kelly, H.P. Ren, D. Qiu, M.X. Zhang, Acta Mater. 58(2010) 3091-3095.
DOI URL |
[38] |
Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Acta Mater. 138(2017) 72-82.
DOI URL |
[39] |
S. Niu, H. Kou, T. Guo, Y. Zhang, J. Wang, J. Li, Mater. Sci. Eng. A 671 (2016) 82-86.
DOI URL |
[40] |
B. Gwalani, V. Soni, M. Lee, S.A. Mantri, Y. Ren, R. Banerjee, Mater. Des. 121(2017) 254.
DOI URL |
[41] |
G. Laplanche, S. Berglund, C. Reinhart, A. Kostka, F. Fox, E.P. George, Acta Mater. 161(2018) 338-351.
DOI URL |
[42] |
H.A. Rauch, Y. Chen, K. An, H.Z. Yu, Acta Mater. 168(2019) 362-375.
DOI URL |
[43] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81(2014) 428-441.
DOI URL |
[44] |
F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggler, E.P. George, Acta Mater. 61(2013) 5743-5755.
DOI URL |
[45] |
W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Acta Mater. 116(2016) 332-342.
DOI URL |
[46] |
Y.J. Chang, A.C. Yeh, Mater. Chem. Phys. 210(2018) 111-119.
DOI URL |
[47] | A. Argon, Demand, 2008. |
[48] |
J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62(2014) 105-113.
DOI URL |
[49] |
C.A. Schuh, T.G. Nieh, H. Iwasaki, Acta Mater. 51(2003) 431-443.
DOI URL |
[50] | P. Lejcě k, MojmírŠ ob, Václav Paidar, Prog.Mater. Sci. 8(2017), 783-139. |
[51] |
W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Scr. Mater. 68(2013) 526-529.
DOI URL |
[52] | A.J. Ardell, Metall. Trans. A 16 (1985) 1985-2131. |
[53] |
T. Gladman, Mater. Sci. Technol. 15(1999) 30-36.
DOI URL |
[1] | Jing Li, Mengjie Zhao, Li Jin, Fenghua Wang, Shuai Dong, Jie Dong. Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd-3.0Y-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 195-200. |
[2] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[3] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[4] | Min Cheol Jo, Selim Kim, Dong Woo Suh, Hong Kyu Kim, Yong Jin Kim, Seok Su Sohn, Sunghak Lee. Enhancement of ballistic performance enabled by transformation-induced plasticity in high-strength bainitic steel [J]. J. Mater. Sci. Technol., 2021, 84(0): 219-229. |
[5] | Jie Wang, Gaoming Zhu, Leyun Wang, Evgenii Vasilev, Jun-Sang Park, Gang Sha, Xiaoqin Zeng, Marko Knezevic. Origins of high ductility exhibited by an extruded magnesium alloy Mg-1.8Zn-0.2Ca: Experiments and crystal plasticity modeling [J]. J. Mater. Sci. Technol., 2021, 84(0): 27-42. |
[6] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[7] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[8] | Muhammad Akmal, Ahtesham Hussain, Muhammad Afzal, Young Ik Lee, Ho Jin Ryu. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination [J]. J. Mater. Sci. Technol., 2021, 78(0): 183-191. |
[9] | Kaisheng Ming, Shuimiao Jiang, Xiaoyuan Niu, Bo Li, Xiaofang Bi, Shijian Zheng. High-temperature strength-coercivity balance in a FeCo-based soft magnetic alloy via magnetic nanoprecipitates [J]. J. Mater. Sci. Technol., 2021, 81(0): 36-42. |
[10] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[11] | Bin Liu, Jifeng Wu, Yanwei Cui, Qinqing Zhu, Guorui Xiao, Siqi Wu, Guang-han Cao, Zhi Ren. Structural evolution and superconductivity tuned by valence electron concentration in the Nb-Mo-Re-Ru-Rh high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 85(0): 11-17. |
[12] | Yu Fu, Jun Li, Hong Luo, Cuiwei Du, Xiaogang Li. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 217-233. |
[13] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Huahai Mao, Jian Sun, Levente Vitos. Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 66-74. |
[14] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
[15] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||