J. Mater. Sci. Technol. ›› 2021, Vol. 86: 260-270.DOI: 10.1016/j.jmst.2021.01.049
• Research Article • Previous Articles Next Articles
Shuting Caoa,b, Yaqian Yanga, Bo Chena,*(), Kui Liua,*(
), Yingche Maa, Leilei Dinga, Junjie Shic
Received:
2020-11-23
Accepted:
2021-01-25
Published:
2021-09-30
Online:
2021-09-24
Contact:
Bo Chen,Kui Liu
About author:
kliu@imr.ac.cn (K. Liu).Shuting Cao, Yaqian Yang, Bo Chen, Kui Liu, Yingche Ma, Leilei Ding, Junjie Shi. Influence of yttrium on purification and carbide precipitation of superalloy K4169[J]. J. Mater. Sci. Technol., 2021, 86: 260-270.
Alloy No. | 0Y | 50Y | 70Y | 330Y |
---|---|---|---|---|
Addition (wt.%) | 0 | 0.01 | 0.02 | 0.1 |
Analysis of the content (wt.%) | 0 | 0.005 | 0.007 | 0.033 |
Table 1 Amount of addition and analysis of element Y in different K4169 alloy ingots.
Alloy No. | 0Y | 50Y | 70Y | 330Y |
---|---|---|---|---|
Addition (wt.%) | 0 | 0.01 | 0.02 | 0.1 |
Analysis of the content (wt.%) | 0 | 0.005 | 0.007 | 0.033 |
0Y | 50Y | 70Y | 330Y | |
---|---|---|---|---|
S | 9 | 2.5 | 3.5 | 5 |
O | 6 | 4 | 5 | 4 |
N | 14 | 14 | 13 | 13 |
Table 2 The impurity elements contents (ppm) in the K4169 alloy ingots. The stand errors are ±2 ppm for all the contents listed.
0Y | 50Y | 70Y | 330Y | |
---|---|---|---|---|
S | 9 | 2.5 | 3.5 | 5 |
O | 6 | 4 | 5 | 4 |
N | 14 | 14 | 13 | 13 |
Fig. 1. Impurity elements contents in K4169 alloy ingots with different Y additions. The variations of S (a), O (b) and N (c) contents are given with different Y additions, respectively. The error bars (±2 ppm) are omitted.
Formula | ΔGΘ (J mol-1) | T =1695 K | Refs. | |
---|---|---|---|---|
(1) | C + O = CO | -67742 - 39.75T | -135118 | [ |
(2) | 2Al + 3O = Al2O3 | -1158310 + 364T | -540346 | [ |
(3) | 3CaO + 2Al + 3S = 3CaS + Al2O3 | -741094 + 303T | -226559 | [ |
(4) | 2Y + 3O = Y2O3 | -1792600 + 658T | -677290 | [ |
(5) | 2Y + 3S = Y2S3 | -2344629 + 1067T | -534878 | [ |
(6) | Y + S = YS | -899560 + 472T | -98384 | [ |
(7) | 2Y + 2O + S = Y2O2S | -634461 + 73T | -509506 | [ |
(8) | 3CaO + 2YS = 3CaS + Y2O3 | -618783 + 173T | -323900 | [ |
Table 3 Standard Gibbs free energies for the deoxidation, desulfurization, and deoxysulphuration reactions in Ni-based superalloys [26,28,29].
Formula | ΔGΘ (J mol-1) | T =1695 K | Refs. | |
---|---|---|---|---|
(1) | C + O = CO | -67742 - 39.75T | -135118 | [ |
(2) | 2Al + 3O = Al2O3 | -1158310 + 364T | -540346 | [ |
(3) | 3CaO + 2Al + 3S = 3CaS + Al2O3 | -741094 + 303T | -226559 | [ |
(4) | 2Y + 3O = Y2O3 | -1792600 + 658T | -677290 | [ |
(5) | 2Y + 3S = Y2S3 | -2344629 + 1067T | -534878 | [ |
(6) | Y + S = YS | -899560 + 472T | -98384 | [ |
(7) | 2Y + 2O + S = Y2O2S | -634461 + 73T | -509506 | [ |
(8) | 3CaO + 2YS = 3CaS + Y2O3 | -618783 + 173T | -323900 | [ |
Y | S | O | |
---|---|---|---|
Y | $-\frac{364.8}{T}+0.2018=-0.016$ | -5.83 | -8.33 |
S | -2.1 | $-\frac{1453}{T}+0.748=-0.120$ | -0.178 |
O | -1.499 | -0.08883 | $\frac{305.84}{T}-0.1289=0.053$ |
Table 4 Interaction coefficients of elements in Ni-based superalloys.
Y | S | O | |
---|---|---|---|
Y | $-\frac{364.8}{T}+0.2018=-0.016$ | -5.83 | -8.33 |
S | -2.1 | $-\frac{1453}{T}+0.748=-0.120$ | -0.178 |
O | -1.499 | -0.08883 | $\frac{305.84}{T}-0.1289=0.053$ |
Fig. 2. Dependence of the O (a) and S (b) concentrations on the Y concentration predicted by Eqs. (9) and (10), respectively. The error bars are ±2 ppm.
Fig. 5. TEM analyses of yttrium oxide in the 330Y alloy: (a) morphology of yttrium oxide; (b) SADP of yttrium oxide [$\bar{7}8\bar{6}$]; (c) SADP of yttrium oxide [344].
Fig. 7. (a) The SEM image of inclusions in the riser of the 330Y alloy. (b) Morphology of the inclusions and corresponding EDS mapping results with regard to the yellow box area.
Fig. 9. The OM images of the K4169 alloy in 0Y alloy (a1 to a3) and 330Y alloy (b1 to b3) at different isothermal temperatures, 1330 °C (a1 and b1), 1270 °C (a2 and b2), and 1200 °C (a3 and b3). The isolated blocky/strip MC carbides and the assembled skeleton-like MC carbides are marked by the red arrows and blue dashed circles, respectively.
Fig. 10. The solid fraction at different temperatures in the isothermal solidification experiments for the K4169 alloys with Y (330Y) and without Y (0Y).
Fig. 11. TEM analyses of carbides in the 330Y alloy: (a) morphology of the blocky MC carbide; (b) morphology of the strip MC carbide; (c) morphology of the symbiotic MC carbide; (d) SADP of the blocky MC carbide $\left[ 12\bar{1} \right]$; (e) SADP of the strip MC carbide [001]; (f) SADP of the symbiotic MC carbide [011].
Fe | Cr | Nb | Ti | Al | Ni | Mo | C | |
---|---|---|---|---|---|---|---|---|
Isolated MC | 0.43 | 0.35 | 44.90 | 5.18 | 0.02 | 1.33 | 0.44 | 47.31 |
Skeleton-like MC | 0.65 | 0.45 | 43.69 | 7.49 | 0.01 | 1.67 | 0.47 | 45.56 |
Symbiotic MC | 0.42 | 0.23 | 45.10 | 7.22 | 0.00 | 1.21 | 0.32 | 45.48 |
Table 5 Spectral analysis of MC carbide compositions (at.%) in the 330Y alloy.
Fe | Cr | Nb | Ti | Al | Ni | Mo | C | |
---|---|---|---|---|---|---|---|---|
Isolated MC | 0.43 | 0.35 | 44.90 | 5.18 | 0.02 | 1.33 | 0.44 | 47.31 |
Skeleton-like MC | 0.65 | 0.45 | 43.69 | 7.49 | 0.01 | 1.67 | 0.47 | 45.56 |
Symbiotic MC | 0.42 | 0.23 | 45.10 | 7.22 | 0.00 | 1.21 | 0.32 | 45.48 |
Alloy no. | Average size (μm) | Std (μm) | Number density (10-5 μm-2) | Morphology |
---|---|---|---|---|
0Y | blocky/strip | |||
50Y | 46.96 | 20.05 | 6.414 | skeleton-like |
70Y | 39.56 | 16.47 | 4.523 | skeleton-like |
330Y | 34.02 | 13.36 | 5.191 | skeleton-like |
Table 6 Average size and number density of carbides.
Alloy no. | Average size (μm) | Std (μm) | Number density (10-5 μm-2) | Morphology |
---|---|---|---|---|
0Y | blocky/strip | |||
50Y | 46.96 | 20.05 | 6.414 | skeleton-like |
70Y | 39.56 | 16.47 | 4.523 | skeleton-like |
330Y | 34.02 | 13.36 | 5.191 | skeleton-like |
Fig. 12. Average size (a) and number density (b) of skeleton-like MC carbides with different Y contents. The error bars represent the standard deviation.
Fig. 13. EPMA and EDS analyses of precipitates in the 330Y alloy: (a) morphology of Y-rich and MC symbiotic phase and corresponding EDS mapping results with regard to the yellow box area; (b) morphology of Y-rich and matrix symbiotic phase and corresponding EDS mapping results with regard to the yellow box area.
Fig. 15. TEM analyses of the multiphase zone in the 330Y alloy: (a) morphology of multiphase zone; (b) SADP of the γ matrix [110] in Fig. 15; (c) SADP of the Ni17Y2 [10$\bar{1}$0] in Fig. 15; (d) SADP of the Ni17Y2 [42¯2¯9¯] in Fig. 15; and (e) SADP of the MC carbide [011] in Fig. 15.
Alloy no. | 0Y | 50Y | 70Y | 330Y |
---|---|---|---|---|
Tensile strength (σp, MPa) | 1090 ± 2 | 1007 ± 4 | 1019 ± 1 | 1046 ± 2 |
Yield strength (σp0.2, MPa) | 1240 ± 3 | 1109 ± 6 | 1135 ± 6 | 1161 ± 2 |
Elongation (A, %) | 11 ± 1 | 8 ± 1 | 9 ± 1 | 9 ± 1 |
Table 7 The room temperature tensile properties of K4169 alloys with different Y additions.
Alloy no. | 0Y | 50Y | 70Y | 330Y |
---|---|---|---|---|
Tensile strength (σp, MPa) | 1090 ± 2 | 1007 ± 4 | 1019 ± 1 | 1046 ± 2 |
Yield strength (σp0.2, MPa) | 1240 ± 3 | 1109 ± 6 | 1135 ± 6 | 1161 ± 2 |
Elongation (A, %) | 11 ± 1 | 8 ± 1 | 9 ± 1 | 9 ± 1 |
Fig. 16. The room temperature tensile results of K4169 alloys, including the ultimate tensile strength (UTS, σp), the yield strength (YS, σp0.2), and the elongation (A). The corresponding stand errors are given in Table 7.
Fig. 17. The SEM images of fracture surfaces of samples with different Y addition: (a) 0Y; (b) 50Y; (c) 70Y; (d)330Y. The longitudinal sections of fracture surfaces of samples with different Y additions: (e) 0Y; (f) 50Y; (g) 70Y; (h) 330Y.
[1] |
P. Zhang, Q. Zhu, G. Chen, C.J. Wang, Mater. Trans. 56(2015) 1930-1939.
DOI URL |
[2] |
T.M. Pollock, S. Tin, J. Propul. Power 22 (2006) 361-374.
DOI URL |
[3] | R. Schafrik, R. Sprague, Adv. Mater. Process. 162(2004) 29-33. |
[4] |
K.R. Zhang, F.Q. Xie, R. Hu, X.Q. Wu, Trans. Nonferrous Met. Soc. China 26 (2016) 1885-1891.
DOI URL |
[5] | R.G. Carlson, J.F. Radavich, Microstructural characterization of cast 718, in: Superalloys 1989, 1989, pp. 79-95. |
[6] | H.L. Eiselstein, PA, 1965. |
[7] |
C. Loier, J.Y. Boos, Metall. Trans. A 12 (1981) 1223-1233.
DOI URL |
[8] | C. Sun, R.F. Huang, J.T. Guo, Z.Q. Hu, Mater. High Temp. 6(1988)145-148. |
[9] |
J.X. Dong, X.S. Xie, R.G. Thompson, Metall. Mater. Trans. A 31 (2000) 2135-2144.
DOI URL |
[10] |
S. Utada, Y. Joh, M. Osawa, T. Yokokawa, T. Sugiyama, T. Kobayashi, k. Kawagishi, S. Suzuki, H. Harada, Metall. Mater. Trans. A 49 (2018) 4029-4041.
DOI URL |
[11] |
H.Y. Wu, Z.M. Fu, Q.Q. Zhang, M.Y. Li, R. Wei, Y. Cao, Z.R. Li, Mater. Sci. Forum 849 (2016) 537-541.
DOI URL |
[12] |
C.F. Miller, G.W. Simmons, R.P. Wei, Scr. Mater. 44(2001) 2405-2410.
DOI URL |
[13] | D.R. Parille, J.G. Smeggil, W.P. Allen, M. Decrescente, S. Chin, R.A. Pike, N.S. Bornstein, D.N. Duhl, Removal of sulphur from superalloy articles by reaction of the surface oxide film - with another material such as a source of magnesium, to enhance the oxidn. resistance of gas turbine and spacecraft engine components, US5346563-A; WO9424320-A1; EP694083-A1; JP8509267-W; EP694083-B1; DE69404455-E; JP3407301-B2 |
[14] | V.V. Sidorov, V.E. Rigin, P.G. Min, Y.I. Folomeikin. Russ. Metall.(2016) 910-915, 2015. |
[15] | V.V. Sidorov, P.G. Min, Russ. Metall, Russ. Metall.(2015) 982-986, 2014. |
[16] | V.V. Sidorov, P.G. Min. Russ. Metall.(2015) 987-991, 2014. |
[17] | R.F. Decker, J.W. Freeman, Trans. AIMME 218 (1960) 277-285. |
[18] | R.T. Holt, W. Wallace, Metall. Rev. 21(1976) 1-24. |
[19] |
C.G. McKamey, C.A. Carmichael, W.D. Cao, R.L. Kennedy, Scr. Mater. 38(1998) 485-491.
DOI URL |
[20] |
S.B. Shendye, D.A. Downham, Oxid. Met. 43(1995) 435-457.
DOI URL |
[21] | J.P. Li, H.R. Zhang, M. Gao, Q.L. Li, J. Zhang, B. Yang, H. Zhang, Rare Met. (2018), . |
[22] |
V.V. Sidorov, P.G. Min, D.E. Kablov, Metallurgist 61 (2017) 400-405.
DOI URL |
[23] |
P.J. Zhou, J.J. Yu, X.F. Sun, H.R. Guan, X.M. He, Z.Q. Hu, Mater. Sci. Eng. A 551 (2012) 236-240.
DOI URL |
[24] |
P.J. Zhou, J.J. Yu, X.F. Sun, H.R. Guan, Z.Q. Hu, Scr. Mater. 57(2007) 643-646.
DOI URL |
[25] |
X.L. Li, S.M. He, X.T. Zhou, Y. Zou, Z.J. Li, A.G. Li, X.H. Yu, Mater. Charact. 95(2014) 171-179.
DOI URL |
[26] |
Q.L. Li, H.R. Zhang, M. Gao, J.P. Li, T.X. Tao, H. Zhang, Int. J. Min. Met. Mater. 25(2018) 696-703.
DOI URL |
[27] |
A.V. Guimaraes, R.M. S. da Silveira, L.H. de Almeida, L.S. Araujo, A.B. Farina, J.A.F. Dille, Mater. Sci. Eng. A 776 (2020), 139023.
DOI URL |
[28] |
T. Du, L. Wang, A. Liu, Y. Wu, Y. Zhang, J. Alloys. Compd. 193(1993) 38-40.
DOI URL |
[29] | K. Xie, B. Chen, M. Zhang, Z. Du, X. Zha, S. Geng, K. Liu, Desulfurization mechanism of K4169 superalloy using CaO crucible in vacuum induction melting process, Chinese Materials Conference (2018) 575-586. |
[30] | V.Y. Dashevskii, A.A. Aleksandrov, Izvestia. Ferrous Metall. 61(2018) 490-493. |
[31] |
A.A. Aleksandrov, V.Y. Dashevskii, L.I. Leont’ev, Steel Transl. 46(2016) 479-483.
DOI URL |
[32] |
W. Bian, H. Zhang, X. Zhang, M. Gao, J. Li, Q. Li, Y. Cui, H. Zhang, Mater. Sci. Eng. A 755 (2019) 190-200.
DOI URL |
[33] | J.A. Dean, New York, 1999. |
[34] |
Y.H. Kong, Q.Z. Chen, Mater. Sci. Eng. A 366 (2004) 135-143.
DOI URL |
[35] |
J.S. Bae, J.H. Lee, S.S. Kim, C.Y. Jo, Scr. Mater. 45(2001) 503-508.
DOI URL |
[36] | L. Liu, F. Sommer, H.Z. Fu, Scr. Metall. 30(1994) 587-591. |
[37] |
C.N. Wei, H.Y. Bor, L. Chang, J. Alloys Compd. 509(2011) 5708-5714.
DOI URL |
[38] |
J. Chen, Y.H. Zhang, T.C. Zhou, Chin. Astron. Astrophys. 22(1998) 113-117.
DOI URL |
[1] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[2] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[3] | Yan Zou, Xiaodong Wu, Songbai Tang, Qianqian Zhu, Hui Song, Mingxing Guo, Lingfei Cao. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios [J]. J. Mater. Sci. Technol., 2021, 85(0): 106-117. |
[4] | Xin Zhong, Tao Zhu, Yaran Niu, Haijun Zhou, Le Zhang, Xiangyu Zhang, Qilian Li, Xuebin Zheng. Effect of microstructure evolution and crystal structure on thermal properties for plasma-sprayed RE2SiO5 (RE = Gd, Y, Er) environmental barrier coatings [J]. J. Mater. Sci. Technol., 2021, 85(0): 141-151. |
[5] | Hui Liang, Dongxu Qiao, Junwei Miao, Zhiqiang Cao, Hui Jiang, Tongmin Wang. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater [J]. J. Mater. Sci. Technol., 2021, 85(0): 224-234. |
[6] | Wenyan Luo, Yunzhong Liu, Cheng Tu. Wetting behaviors and interfacial characteristics of molten AlxCoCrCuFeNi high-entropy alloys on a WC substrate [J]. J. Mater. Sci. Technol., 2021, 78(0): 192-201. |
[7] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
[8] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[9] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
[10] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
[11] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
[12] | Xiaoyang Yi, Kuishan Sun, Jingjing Liu, Xiaohang Zheng, Xianglong Meng, Zhiyong Gao, Wei Cai. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content [J]. J. Mater. Sci. Technol., 2021, 83(0): 123-130. |
[13] | Yang Bao, Lujun Huang, Shan Jiang, Rui Zhang, Qi An, Caiwei Zhang, Lin Geng, Xinxin Ma. A novel Ti cored wire developed for wire-feed arc deposition of TiB/Ti composite coating [J]. J. Mater. Sci. Technol., 2021, 83(0): 145-160. |
[14] | Y.M. Ren, X. Lin, H.O. Yang, H. Tan, J. Chen, Z.Y. Jian, J.Q. Li, W.D. Huang. Microstructural features of Ti-6Al-4V manufactured via high power laser directed energy deposition under low-cycle fatigue [J]. J. Mater. Sci. Technol., 2021, 83(0): 18-33. |
[15] | Jingfeng Zou, Lifeng Ma, Weitao Jia, Qichi Le, Gaowu Qin, Yuan Yuan. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 228-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||