J. Mater. Sci. Technol. ›› 2021, Vol. 83: 131-144.DOI: 10.1016/j.jmst.2020.11.078
• Research Article • Previous Articles Next Articles
J.W. Lianga, Y.F. Shenb,*(
), R.D.K. Misrac,*(
), P.K. Liawd
Received:2020-09-02
Revised:2020-11-13
Accepted:2020-11-20
Published:2021-02-01
Online:2021-02-01
Contact:
Y.F. Shen,R.D.K. Misra
About author:dmisra2@utep.edu (R.D.K. Misra).J.W. Liang, Y.F. Shen, R.D.K. Misra, P.K. Liaw. High strength-superplasticity combination of ultrafine-grained ferritic steel: The significant role of nanoscale carbides[J]. J. Mater. Sci. Technol., 2021, 83: 131-144.
Fig. 1. EBSD inverse-pole-figure (IPF) microstructure maps exhibit the morphology of grains in the ultrafine-grained (UFG) steel, and the inset showing (001), (101), and (111) orientations in red, blue, and green, respectively (a). SEM picture showing numerous cementite nanoparticles coexisted with ultrafine grains (b), the corresponding statistical results presenting that the average grain size is ~ 500 ± 30 nm (c) with a mean size of 80 ± 10 nm for nanoparticles (d). Orientation distribution functions (ODFs, φ2 = 45° sections) showing the crystallographic textures for as-prepared steel (e).
Fig. 2. Engineering stress-strain (a, b, c) and true strain-stress curves (a1, b1, c1) taken at various strain rates of 0.17 s-1, 0.017 s-1, and 0.0017 s-1 under 25 °C, 150 °C, 300 °C, 450 °C, and 600 °C for the UFG ferritic steel (D6AC).
Fig. 3. EBSD inverse pole figure (IPF) microstructure maps revealing the morphology of grains in the UFG ferritic steel at 0.17 s-1 (a), 0.017 s-1 (b), and 0.0017 s-1 (c) at 600 °C, which had an average grain size of ~500 ± 30 nm, coexisting with nanosized Fe3C particles (d = 80 ± 10 nm). (d) The variation of grain sizes and volume fraction of high-angle grainboundary (FHAGB) of the as-prepared UFG ferritic steels as a function of strain rate tested at 600 °C.
| Temperature (oC) | Strain rate (s-1) | Deformed region (%) | Sub-structure (%) | Recrystallized region (%) |
|---|---|---|---|---|
| 25 | 0.17 | 55 | 40 | 5 |
| 0.017 | 65 | 35 | / | |
| 0.0017 | 70 | 30 | / | |
| 600 | 0.17 | 47 | 43 | 10 |
| 0.017 | 15 | 62 | 23 | |
| 0.0017 | 15 | 50 | 35 |
Table 1 Area fractions of sub-structure, deformed, and recrystallized regions as a function of temperature and strain rate in the as-prepared UFG ferritic steel, D6AC (D = ~ 500 ± 30 nm, dFe3C = 80 ± 10 nm).
| Temperature (oC) | Strain rate (s-1) | Deformed region (%) | Sub-structure (%) | Recrystallized region (%) |
|---|---|---|---|---|
| 25 | 0.17 | 55 | 40 | 5 |
| 0.017 | 65 | 35 | / | |
| 0.0017 | 70 | 30 | / | |
| 600 | 0.17 | 47 | 43 | 10 |
| 0.017 | 15 | 62 | 23 | |
| 0.0017 | 15 | 50 | 35 |
Fig. 4. TEM micrographs showing the morphologies of the nanosized Fe3C particles in the UFG steel after deformation at different strain rates and temperatures: (a) 0.17 s-1 @300 °C; (b) 0.0017 s-1 @300 °C; (c) close observation reveals the dissolution of the nanosized Fe3C particles during deformation at 300 °C, supported by the white circles marked by green arrows; (d) 0.17 s-1 @600 °C;(e) 0.0017 s-1 @600 °C; (f) the corresponding diffractogram of fine particle (yellow arrow) indicates the particle as VC and close observation shows the wavy band (purple arrows) and the dissolution of the nanosized Fe3C particles (marked by green arrows) at 600 °C; (g) close observation exhibits the slip step and the dissolution thickness of the nanosized Fe3C particles (yellow dotted line) at 600 °C. Representative 3D Atom probe tomography (APT) analysis nanosized Fe3C particles delineated with a 5 at.% C iso-concentration surface (brown): (h) 0.17 s-1 @300 °C; (i) 0.0017 s-1 @300° C; (j) 0.17 s-1 @600 °C;and (k) 0.0017 s-1 @600 °C. Figures are cropped to 80 nm × 80 nm × 300 nm, 60 nm × 60 nm × 360 nm, 80 nm × 80 nm × 320 nm, and 60 nm × 60 nm × 600 nm volumes for 4 specimens. The calculated volume fractions of Fe3C particles can be seen in Table 2.
| Temperature (oC) | Strain rate (s-1) | Fv (%) | $\bar{D}$ (nm) | ||
|---|---|---|---|---|---|
| TEM ± 2 | APT ± 1 | TEM ± 10 | APT ± 5 | ||
| 300 | 0.17 | 15.7 | 13.4 | 77 | 78 |
| 0.017 | 14.2 | / | 75 | ||
| 0.0017 | 12.5 | 10.8 | 72 | 70 | |
| 600 | 0.17 | 8.9 | 6.3 | 65 | 62 |
| 0.017 | 8.3 | / | 64 | ||
| 0.0017 | 7.6 | 4.7 | 60 | 55 | |
Table 2 Area fraction of Fe3C particles, Fv, as a function of temperature and strain rate in the deformed UFG ferritic steel, D6AC (D = ~ 500 ± 30 nm, dFe3C = 80 ± 10 nm).
| Temperature (oC) | Strain rate (s-1) | Fv (%) | $\bar{D}$ (nm) | ||
|---|---|---|---|---|---|
| TEM ± 2 | APT ± 1 | TEM ± 10 | APT ± 5 | ||
| 300 | 0.17 | 15.7 | 13.4 | 77 | 78 |
| 0.017 | 14.2 | / | 75 | ||
| 0.0017 | 12.5 | 10.8 | 72 | 70 | |
| 600 | 0.17 | 8.9 | 6.3 | 65 | 62 |
| 0.017 | 8.3 | / | 64 | ||
| 0.0017 | 7.6 | 4.7 | 60 | 55 | |
Fig. 5. SEM micrographs showing the morphologies of fracture surfaces the UFG ferritic steel (D6AC) tested at 600 °C with strain rates of 0.17 s-1 (a, b) and 0.0017 s-1 (c, d).
Fig. 6. Dimple size, λ, on the fracture surface of the deformed UFG ferritic steel (D6AC) (D = ~500 nm, dFe3C = 80 ± 10 nm) as a function of temperature and strain rate (a) and elongation and together with dimple area fraction at 600 °C (b).
Fig. 7. Mechanical properties of the as-prepared UFG ferritic steel (D6AC) tested at 600 °C, compared with martensitic (M) steel [20], oxide-dispersion-strengthened (ODS) steel [24,54,55], low-activation martensitic (LAM) steel [25], reduced activation ferritic-martensitic (RAFM) steel [26,56], ferritic stainless (FS) steel [57], and cold-formed (CF) steel [58].
Fig. 8. TEM image showing the traces of grain boundary sliding of the UFG ferritic steel deformed at 600 °C and 0.0017 s-1, and a number of fine VC particles (circled) and large Fe3C particles occurring in the matrix and grain boundaries. Double yellow arrows indicate the shifting distance of grain boundaries while double red arrows indicate the partial dissolution of Fe3C.
Fig. 9. Schematic illustration showing the fundamental fracture mechanism of the UFG ferritic steel (D6AC) (D = ~500 nm, dFe3C = 80 ± 10 nm) tested at different temperatures and strain rates.
| [1] | Carbon and Low Alloy Steels Committee, SAE AMS6431: Steel, Bars, Forgings, and Tubing, 1.05Cr-0.55Ni-1.0Mo-0.11V (0.45-0.50C) (D6AC), USA, 2007. |
| [2] | G. Krauss, Steels-Processing, Structure, and Performance, ASM International, Materials Park, OH, 2005, pp. 251-262. |
| [3] |
H.K.D.H. Bhadeshia, Prog. Mater. Sci. 57 (2012) 268-435.
DOI URL |
| [4] |
M. Song, K. Guan, Eng. Fail. Anal. 18 (2011) 1613-1618.
DOI URL |
| [5] | L. Ratke, P.W. Voorhees, New York, 2002, pp. 117-166. |
| [6] |
D. Lian, Appl. Surf. Sci. 264 (2013) 100-104.
DOI URL |
| [7] |
H.W. Luo, X.H. Wang, Z.B. Liu, Z.Y. Yang, J. Mater. Sci. Technol. 51 (2020) 130-136.
DOI URL |
| [8] | W.Y. Xue, J.H. Zhou, Y.F. Shen, W.N. Zhang, Z.Y. Liu, Mater. Sci. Technol. 35 (2019) 1869-1876. |
| [9] |
T.G. Langdon, Acta Mater. 61 (2013) 7035-7059.
DOI URL |
| [10] |
Y. Ma, F.P. Yuan, M.X. Yang, P. Jiang, E. Ma, X.L. Wu, Acta Mater. 148 (2018) 407-418.
DOI URL |
| [11] |
L. Xiong, Z.S. You, S.D. Qu, L. Lu, Acta Mater. 150 (2018) 130-138.
DOI URL |
| [12] |
C.W. Shao, P. Zhang, Y.K. Zhu, Z.J. Zhang, Y.Z. Tian, Z.F. Zhang, Acta Mater. 145 (2018) 413-428.
DOI URL |
| [13] |
Y. Chen, N. Gao, G. Sha, S.P. Ringer, M.J. Starink, Acta Mater. 109 (2016) 202-212.
DOI URL |
| [14] |
Z. Yanushkevich, S.V. Dobatkin, A. Belyakov, R. Kaibyshev, Acta Mater. 136 (2017) 39-48.
DOI URL |
| [15] |
M. Jafari, C.W. Bang, J.C. Han, K.M. Kim, S.H. Na, C.G. Park, B.J. Lee, J. Mater. Sci. Technol. 41 (2020) 1-11.
DOI |
| [16] |
Y. Kimura, T. Inoue, F. Yin, K. Tsuzaki, Science 320 (2008) 1057-1060.
DOI PMID |
| [17] |
N. Jia, Y.F. Shen, J.W. Liang, X.W. Feng, H.B. Wang, R.D.K. Misra, Sci. Rep. 7 (2017) 2079.
DOI URL |
| [18] |
J.W. Liang, Y.F. Shen, C.S. Zhang, X.W. Feng, H.B. Wang, X. Sun, Mater. Sci. Eng. A 726 (2018) 298-308.
DOI URL |
| [19] | ANSI/AISC 360-10, Specification for Structural Steel Buildings, American Institution of Steel Construction, Chicago, USA, 2010. |
| [20] | N. Sen, G. Durucan, O. Elkoca, Ironmak Steelmak 2 (2019) 1-9. |
| [21] |
M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 59 (2011) 658-670.
DOI URL |
| [22] |
R. Song, D. Ponge, D. Raabe, Acta Mater. 53 (2005) 4881-4892.
DOI URL |
| [23] |
T. Yang, Y.L. Zhao, W.P. Li, Science 369 (2020) 427-432.
DOI PMID |
| [24] |
A. Chauhan, D. Litvinov, J. Aktaa, J. Nucl. Mater. 468 (2016) 1-8.
DOI URL |
| [25] | J.H. Zhou, Y.F. Shen, Y.Y. Hong, W.Y. Xue, R.D.K. Misra, Mater. Sci. Eng. A 769 (2019), 138471. |
| [26] |
J. Vanaja, K. Laha, M. Nandagopal, J. Nucl. Mater. 433 (2013) 412-418.
DOI URL |
| [27] |
L. Tan, D.T. Hoelzer, J.T. Busby, M.A. Sokolov, R.L. Klueh, J. Nucl. Mater. 422 (2012) 45-50.
DOI URL |
| [28] |
T. Furuhara, T. Maki, J. Mater. Sci. 40 (2005) 919-926.
DOI URL |
| [29] |
R.D.K. Misra, J. Hu, I.V.S. Yashwanth, V.S.A. Challa, L.X. Du, G.S. Sun, H. Xie, Mater. Sci. Eng. A 668 (2016) 105-111.
DOI URL |
| [30] |
S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, A.K. Mukherjee, Nature 398 (1999) 684-686.
DOI URL |
| [31] |
T. Wang, J. Hu, L.X. Du, G.S. Sun, R.D.K. Misra, Mater. Lett. 243 (2019) 165-168.
DOI URL |
| [32] |
H.T. Jeong, W.J. Kim, J. Mater. Sci. Technol. 42 (2020) 190-202.
DOI |
| [33] |
Y.W. Lee, Y.I. Son, S.J. Lee, Mater. Sci. Eng. A 585 (2013) 94-99.
DOI URL |
| [34] |
C.S. Zheng, L.F. Li, W.Y. Yang, Z.Q. Sun, Mater. Sci. Eng. A 617 (2014) 31-38.
DOI URL |
| [35] |
L.W. Zhong, W.L. Gao, Z.H. Feng, Z. Lu, C.C. Zhu, J. Mater. Sci. Technol. 35 (2019) 2409-2421.
DOI URL |
| [36] |
Y.K. Cao, W.D. Zhang, B. Liu, Y. Liu, M. Du, A. Fu, J. Mater. Sci. Technol. 66 (2021) 10-20.
DOI URL |
| [37] |
X.J. Hao, Z.G. Liu, K. Masuyama, T. Rikimaru, M. Umemoto, K. Tsuchiya, S.M. Hao, Mater. Sci. Technol. 17 (2001) 1347-1352.
DOI URL |
| [38] |
J. Languillaume, G. Kapelski, B. Baudelet, Acta Mater. 45 (1997) 1201-1212.
DOI URL |
| [39] |
D. Pan, S. Kuwano, T. Fujita, M.W. Chen, Nano Lett. 7 (2007) 2108-2111.
DOI URL |
| [40] |
M.H. Alvi, S. Cheong, H. Weiland, A.D. Rollett, Acta Mater. 56 (2008) 3098-3108.
DOI URL |
| [41] |
X.X. Dong, Y.F. Shen, T.W. Yin, R.D.K. Misra, G. Lin, Mater. Sci. Eng. A 759 (2019) 725-735.
DOI URL |
| [42] |
Y.S. Chen, H.Z. Lu, J.T. Liang, Science 367 (2020) 171-175.
DOI URL |
| [43] |
M. Yan, G. Terence, T.G. Langdon, Metall. Mater. Trans. A 27 (1996) 873-878.
DOI URL |
| [44] |
R.C. Gifkins, Metall. Mater. Trans. A 7 (1976) 1225-1232.
DOI URL |
| [45] | Y. Estrin, Unified Constitutive Laws of Plastic Deformation, Academic Press, New York, 1996, pp. 69-106. |
| [46] |
A. Vinogradov, I.S. Yasnikov, H. Matsuyama, M. Uchida, Y. Kaneko, Y. Estrin, Acta Mater. 106 (2016) 295-303.
DOI URL |
| [47] |
Y.J. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe, R. Kirchheim, Acta Mater. 59 (2011) 3965-3977.
DOI URL |
| [48] |
K.T. Park, D.H. Shin, Mater. Sci. Eng. A 334 (2002) 79-86.
DOI URL |
| [49] |
M. Jafari, C.W. Bang, J.C. Han, K.M. Kim, S.H. Na, C.G. Park, J. Mater. Sci. Technol. 41 (2020) 1-11.
DOI |
| [50] |
V.N. Gridnev, V.V. Nemoshkalenko, Y.Y. Meshkov, V.G. Gavrilyuk, G. Prokopenko, O.N. Razumov, Phys. Status Solidi A 31 (1975) 201-210.
DOI URL |
| [51] |
A. Taniyama, T. Takayama, M. Arai, Metall. Mater. Trans. A 48 (2017) 4821-4830.
DOI URL |
| [52] |
Y.J. Li, P.P. Choi, S. Goto, Acta Mater. 60 (2012) 4005-4016.
DOI URL |
| [53] |
Z.Q. Lv, P. Jiang, Z.H. Wang, Mater. Lett. 62 (2008) 2825-2827.
DOI URL |
| [54] |
R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, J. Nucl. Mater. 341 (2005) 103-114.
DOI URL |
| [55] |
M. Li, Z.J. Zhou, P. He, L. Lu, Y.L. Xu, C.C. Ge, Fusion Eng. Des. 85 (2010) 1573-1576.
DOI URL |
| [56] | Y. Li, Q. Huang, Y. Wu, T. Nagasaka, T. Muroga, J. Nucl. Mater. 367 (2007) 117-121. |
| [57] | T. Manninen, J. Säynäjäkangas, Mechanical Properties of Ferritic Stainless Steels at Elevated Temperature, Stainless Steel in Structures, Fourth International Experts Seminar (2012). |
| [58] | N.D. Kankanamge, M. Mahendran, Steel Constr. 49 (2011) 26-44. |
| [59] |
T. Gladman, Mater. Sci. Technol. 15 (1999) 30-36.
DOI URL |
| [60] |
J. Hu, L.X. Du, G.S. Sun, R.D.K. Misra, H. Xie, Sci. Rep. 5 (2015) 18656.
DOI PMID |
| [61] | M.A. Mayers, K.K. Chawla, New 429 Jersey, 1999, 07458. |
| [62] |
G. Yang, X. Sun, Z. Li, Mater. Des. 50 (2013) 102-107.
DOI URL |
| [63] |
A.N. Tsuji, A.Y. Saito, A.H. Utsunomiya, S.A. Tanigawa, Scr. Mater. 40 (1999) 795-800.
DOI URL |
| [64] |
S. Torizuka, E. Muramatsu, S.V.S. Murty, Scr. Mater. 55 (2006) 751-754.
DOI URL |
| [65] | T.H. Alden, Review Topics in Superplasticity, Academic Press, London, 1975, pp. 225-266. |
| [66] |
T.G. Langdon, Metall. Trans. A 13 (1982) 689-701.
DOI URL |
| [67] | T. Kaneaki, M. Hironisa, N. Mamoru, M. Tadashi, Mater. Trans. 11 (1990) 983-994. |
| [68] |
W. Zhang, H. Liu, H. Ding, F. Hidetoshi, J. Alloys. Compd. 803 (2019) 901-911.
DOI URL |
| [69] |
F.C. Liu, P. Xue, Z.Y. Ma, Mater. Sci. Eng. A 547 (2012) 55-63.
DOI URL |
| [70] |
Y.F. Shen, X. Sun, C.M. Wang, Mater. Sci. Eng. A 528 (2011) 8150-8156.
DOI URL |
| [71] |
Y.Q. Wang, S.J. Clark, V. Janik, R.K. 585 Heenan, D.Alba Venero, K. Yan, D.G. McCartney, S. Sridhar, P.D. Lee, Acta Mater. 145 (2018) 84-96.
DOI URL |
| [72] |
G.Y. Li, H. Ding, J. Wang, W.J. Zhang, N. Zhang, H.L. Hou, Mater. Sci. Technol. 35 (2019) 939-945.
DOI URL |
| [73] |
S.D. Pulino, A.M.M. Nazar, J.J. Ammann, R.E. Medrano, Acta Mater. 45 (1997) 4663-4666.
DOI URL |
| [74] | N. Ridley, Z.C. Wang, Mater. Sci.Forum 170- 172 (1994) 177-186. |
| [75] | P. John, R. Norman, Res Mech. 23 (1988) 31-63. |
| [76] |
X.G. Jiang, J.C. Earthman, F.A. Mohamed, J. Mater. Sci. 29 (1994) 5499-5514.
DOI URL |
| [1] | Lei Su, Min Niu, De Lu, Zhixin Cai, Mingzhu Li, Hongjie Wang. A review on the emerging resilient and multifunctional ceramic aerogels [J]. J. Mater. Sci. Technol., 2021, 75(0): 1-13. |
| [2] | Enkang Hao, Yulong An, Jie Chen, Xiaoqin Zhao, Guoliang Hou, Jianmin Chen, Meizhen Gao, Fengyuan Yan. In-situ formation of layer-like Ag2MoO4 induced by high-temperature oxidation and its effect on the self-lubricating properties of NiCoCrAlYTa/Ag/Mo coatings [J]. J. Mater. Sci. Technol., 2021, 75(0): 164-173. |
| [3] | Chuang Qiao, Mingna Wang, Long Hao, Xiahe Liu, Xiaolin Jiang, Xizhong An, Duanyang Li. Temperature and NaCl deposition dependent corrosion of SAC305 solder alloy in simulated marine atmosphere [J]. J. Mater. Sci. Technol., 2021, 75(0): 252-264. |
| [4] | Kaiming Cheng, Jiaxing Sun, Huixia Xu, Jin Wang, Chengwei Zhan, Reza Ghomashchi, Jixue Zhou, Shouqiu Tang, Lijun Zhang, Yong Du. Diffusion growth of ϕ ternary intermetallic compound in the Mg-Al-Zn alloy system: In-situ observation and modeling [J]. J. Mater. Sci. Technol., 2021, 60(0): 222-229. |
| [5] | Zhongdi Yu, Minghui Chen, Jinlong Wang, Fengjie Li, Shenglong Zhu, Fuhui Wang. Enamel coating for protection of the 316 stainless steel against tribo-corrosion in molten zinc alloy at 460 °C [J]. J. Mater. Sci. Technol., 2021, 65(0): 126-136. |
| [6] | Ping Deng, Qunjia Peng, En-Hou Han, Wei Ke, Chen Sun. Proton irradiation assisted localized corrosion and stress corrosion cracking in 304 nuclear grade stainless steel in simulated primary PWR water [J]. J. Mater. Sci. Technol., 2021, 65(0): 61-71. |
| [7] | A.N.M. Tanvir, Md. R.U. Ahsan, Gijeong Seo, Brian Bates, Chanho Lee, Peter K. Liaw, Mark Noakes, Andrzej Nycz, Changwook Ji, Duck Bong Kim. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 67(0): 80-94. |
| [8] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
| [9] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
| [10] | X.W. Liu, N. Gao, J. Zheng, Y. Wu, Y.Y. Zhao, Q. Chen, W. Zhou, S.Z. Pu, W.M. Jiang, Z.T. Fan. Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly thermostable in-situ precipitated carbides [J]. J. Mater. Sci. Technol., 2021, 72(0): 29-38. |
| [11] | Ji Liu, Jianqiu Wang, Zhiming Zhang, Hui Zheng. Repassivation behavior of alloy 690TT in simulated primary water at different temperatures [J]. J. Mater. Sci. Technol., 2021, 68(0): 227-235. |
| [12] | Qiuzhi Gao, Ziyun Liu, Huijun Li, Hailian Zhang, Chenchen Jiang, Aimin Hao, Fu Qu, Xiaoping Lin. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68(0): 91-102. |
| [13] | Peng Liu, Rui Zhang, Yong Yuan, Chuanyong Cui, Faguang Liang, Xi Liu, Yuefeng Gu, Yizhou Zhou, Xiaofeng Sun. Microstructural evolution of a Ni-Co based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Mater. Sci. Technol., 2021, 77(0): 66-81. |
| [14] | Li Sun, Xiaobo Ren, Jianying He, Zhiliang Zhang. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 67(0): 11-22. |
| [15] | Nana Zhao, Fengchu Zhang, Fei Zhan, Ding Yi, Yijun Yang, Weibin Cui, Xi Wang. Fe 3+-stabilized Ti3C2Tx MXene enables ultrastable Li-ion storage at low temperature [J]. J. Mater. Sci. Technol., 2021, 67(0): 156-164. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
