J. Mater. Sci. Technol. ›› 2021, Vol. 83: 145-160.DOI: 10.1016/j.jmst.2020.12.041
• Research Article • Previous Articles Next Articles
Yang Baob, Lujun Huanga,b,*(
), Shan Jiangb, Rui Zhangb, Qi Anb, Caiwei Zhangb, Lin Genga,b,*(
), Xinxin Mab
Received:2020-10-27
Revised:2020-12-13
Accepted:2020-12-16
Published:2021-02-01
Online:2021-02-01
Contact:
Lujun Huang,Lin Geng
About author:genglin@hit.edu.cn (L. Geng).Yang Bao, Lujun Huang, Shan Jiang, Rui Zhang, Qi An, Caiwei Zhang, Lin Geng, Xinxin Ma. A novel Ti cored wire developed for wire-feed arc deposition of TiB/Ti composite coating[J]. J. Mater. Sci. Technol., 2021, 83: 145-160.
| Coating | Welding current (A) | Wire feeding speed (m min-1) | Scanning speed (cm min-1) | WFS/SS |
|---|---|---|---|---|
| 1 | 110 | 0.8 | 30 | 2.6 |
| 2 | 120 | 0.8 | 30 | 2.6 |
| 3 | 130 | 0.8 | 30 | 2.6 |
| 4 | 140 | 0.8 | 30 | 2.6 |
| 5 | 140 | 1.0 | 30 | 3.3 |
| 6 | 140 | 1.2 | 30 | 4.0 |
Table 1 The processing parameters used to deposit Ti-TiB2 cored wire.
| Coating | Welding current (A) | Wire feeding speed (m min-1) | Scanning speed (cm min-1) | WFS/SS |
|---|---|---|---|---|
| 1 | 110 | 0.8 | 30 | 2.6 |
| 2 | 120 | 0.8 | 30 | 2.6 |
| 3 | 130 | 0.8 | 30 | 2.6 |
| 4 | 140 | 0.8 | 30 | 2.6 |
| 5 | 140 | 1.0 | 30 | 3.3 |
| 6 | 140 | 1.2 | 30 | 4.0 |
Fig. 3. Microstructures of a solidified wire end: a) cross-sectioned morphology; b) magnified image for zone 1; c) magnified image for zone 2, wherein c2) is the element distribution along the white arrow in c1), c4) is the XRD spectrum acquired from zone 2; d) magnified image for zone 3.
| Position | Ti | Al | V | B |
|---|---|---|---|---|
| 1 | 14.38 | 2.34 | 29.09 | 54.19 |
| 2 | 4.04 | 6.28 | 32.42 | 57.26 |
| 3 | 85.47 | 9.46 | 5.07 | - |
| 4 | 84.88 | 9.38 | 5.74 | - |
| 5 | 85.15 | 9.55 | 5.30 | - |
| 6 | 42.02 | 35.97 | 22.00 | - |
| 7 | 29.21 | 51.46 | 19.33 | - |
| 8 | 36.50 | 45.57 | 17.93 | - |
Table 2 Chemical composition of position 1~8 in Fig. 3 (at.%).
| Position | Ti | Al | V | B |
|---|---|---|---|---|
| 1 | 14.38 | 2.34 | 29.09 | 54.19 |
| 2 | 4.04 | 6.28 | 32.42 | 57.26 |
| 3 | 85.47 | 9.46 | 5.07 | - |
| 4 | 84.88 | 9.38 | 5.74 | - |
| 5 | 85.15 | 9.55 | 5.30 | - |
| 6 | 42.02 | 35.97 | 22.00 | - |
| 7 | 29.21 | 51.46 | 19.33 | - |
| 8 | 36.50 | 45.57 | 17.93 | - |
Fig. 10. Microstructure characteristic of TiB/Ti composite coating: a) SE mode; b) BSE mode; TEM BF images of c) TiB and d) α/β lamella; e) and f) SAED patterns of α/β lamella at different zone axes; g) pole figure of β-Ti at [[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]] projection direction; h) pole figure of α-Ti at [[11], [12], [13], [14], [15], [16], [17], [18], [19], [20]] projection direction; i) OM and j) SEM image of interfacial region.
Fig. 12. Content and distribution of TiB whiskers in TiB/Ti composite coatings produced by different welding currents (BSE mode): a1)-d1) top region; a2)-d2) middle region; a3)-d3) bottom region; e) the area fraction of TiB in different regions.
Fig. 13. Morphology of α/β lamellae in the coating prepared by a) 110 A; b) 120 A; c) 130 A; d) 140 A, e) shows the α/β lamellae of Ti6Al4V substrate.
Fig. 14. Content and distribution of TiB whiskers in TiB/Ti composite coatings produced by different wire feeding speeds (SE mode): a1)-c1) top region; a2)-c2) middle region; a3)-c3) bottom region; d) the area fraction of TiB in different regions.
| [1] |
D. Banerjee, J.C. Williams, Acta Mater. 61 (2013) 844-879.
DOI URL |
| [2] | G. Lütjering, J.C. Williams, Titanium, 2nd ed, Springer Berlin Heidelberg press, New York, 2007. |
| [3] |
F. Weng, H. Yu, C. Chen, J. Dai, Mater. Des. 80 (2015) 174-181.
DOI URL |
| [4] |
S. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, Y. Fu, Mater. Des. 95 (2016) 127-132.
DOI URL |
| [5] |
M.Y. Koo, J.S. Park, M.K. Park, K.T. Kim, S.H. Hong, Scr. Mater. 66 (2012) 487-490.
DOI URL |
| [6] |
H. Attar, S. Ehtemam-Haghighi, D. Kent, I.V. Okulov, H. Wendrock, M. Bönisch, A.S. Volegovf, M. Caline, J. Eckertg, M.S. Darguscha, Mater. Sci. Eng. A 688 (2017) 20-26.
DOI URL |
| [7] |
C. Cai, C. Radoslaw, J. Zhang, Q. Yan, S. Wen, B. Song, Y. Shi, Powder Technol. 342 (2019) 73-84.
DOI URL |
| [8] |
C. Cai, S. He, L. Li, Q. Teng, B. Song, C. Yan, Q. Wei, Y. Shi, Compos. Part B-Eng. 164 (2019) 546-558.
DOI URL |
| [9] |
Y. Lin, Y. Lei, X. Li, X. Zhi, H. Fu, Opt. Laser Eng. 82 (2016) 48-55.
DOI URL |
| [10] |
X. Tao, Z. Yao, S. Zhang, J. Liao, J. Liang, Surf. Coat. Technol. 337 (2018) 418-425.
DOI URL |
| [11] |
Y. Bao, L. Huang, Q. An, S. Jiang, R. Zhang, L. Geng, X. Ma, J. Eur. Ceram. Soc. 40 (2020) 4381-4395.
DOI URL |
| [12] |
R. Banerjee, A. Genc¸, P.C. Collins, H.L. Fraser, Metall. Mater. Trans. A 35 (2004) 2143-2152.
DOI URL |
| [13] |
M. Das, V.K. Balla, D. Basu, I. Manna, T.S. Sampath Kumar, A. Bandyopadhyay, Scr. Mater. 66 (2012) 578-581.
DOI URL |
| [14] |
Y. Diao, K. Zhang, Appl. Surf. Sci. 352 (2015) 163-168.
DOI URL |
| [15] |
P.K. Farayibi, J.W. Murray, L. Huang, F. Boud, P.K. Kinnell, A.T. Clare, J. Mater. Process. Technol. 214 (2014) 710-721.
DOI URL |
| [16] |
Y. Feng, K. Feng, C. Yao, Z. Li, J. Sun, Mater. Des. 157 (2018) 258-272.
DOI URL |
| [17] |
D.T. Waghmare, C. Kumar Padhee, R. Prasad, M. Masanta, J. Mater. Process. Technol. 262 (2018) 551-561.
DOI URL |
| [18] |
Q. An, L. Huang, S. Jiang, S. Wang, R. Zhang, F. Sun, A. Moridi, L. Geng, Ceram. Int. 46 (2020) 8068-8074.
DOI URL |
| [19] | F. Wang, S. Williams, M. Rush, Inter. J. Adv. Manuf. Tech. 2011 (2011) 597-603. |
| [20] | A.N.D. Gasper, S. Catchpole-Smith, A.T. Clare, J. Mater, Proc. IEEE Int. Symp. Signal Proc. Inf. Tech. 239 (2017) 230-239. |
| [21] |
Y. Bao, L. Huang, Q. An, S. Jiang, L. Geng, X. Ma, Mater. Lett. 229 (2018) 221-224.
DOI URL |
| [22] | Y. Bao, L. Huang, Q. An, S. Jiang, R. Zhang, L. Geng, X. Ma, J. Mater, Proc. IEEE Int. Symp. Signal Proc. Inf. Tech. 274 (2019), 116298. |
| [23] |
S. Saroj, C.K. Sahoo, M. Masanta, J. Mater. Process. Technol. 249 (2017) 490-501.
DOI URL |
| [24] |
D. Tijo, M. Masanta, A.K. Das, Surf. Coat. Technol. 344 (2018) 541-552.
DOI URL |
| [25] |
D. Tijo, M. Masanta, Surf. Coat. Technol. 344 (2018) 579-589.
DOI URL |
| [26] |
B. Silwal, J. Walker, D. West, Int. J. Adv. Manuf. Tech. 102 (2019) 3839-3848.
DOI URL |
| [27] |
J. Huang, W. Yuan, S. Yu, L. Zhang, X. Yu, D. Fan, J. Manuf. Process. 49 (2020) 397-412.
DOI URL |
| [28] |
S. Zhao, L. Yang, Y. Huang, S. Xu, J. Mater. Process. Technol. 285 (2020), 116745.
DOI URL |
| [29] |
B. Lindahl, X.L. Liu, Z.-K. Liu, M. Selleby, Calphad 51 (2015) 75-88.
DOI URL |
| [30] |
J.J. Valencia, J.P.A. Löfvander, C. Mccullough, C.G. Levi, R. Mehrabian, Mater. Sci. Eng. A 144 (1991) 25-36.
DOI URL |
| [31] |
B. Wu, D. Ding, Z. Pan, D. Cuiuri, H. Li, J. Han, Z. Fei, J. Mater. Process. Technol. 250 (2017) 304-312.
DOI URL |
| [32] |
M.L. Lin, T.W. Eagar, Metall. Trans. B 17 (1986) 601-607.
DOI URL |
| [33] |
X. Ding, H. Li, L. Yang, Y. Gao, Int. J. Adv. Manuf. Tech. 69 (2013) 107-112.
DOI URL |
| [34] | W.F. Gale, T.C. Totemeier, Smithells Metals Reference Book, 8th ed, Elsevier Butterworth-Heinemann press, Oxford, 2004. |
| [35] | D. Wu, J. Huang, L. Kong, X. Hua, M. Wang, Int. J. Heat Mass Transf.- Theory Appl. 154 (2020), 119641. |
| [36] |
X. Ma, C. Li, Z. Du, W. Zhang, J. Alloys. Compd. 370 (2004) 149-158.
DOI URL |
| [37] |
M.J. Bermingham, S.D. McDonald, M.S. Dargusch, Mater. Sci. Eng. A 719 (2018) 1-11.
DOI URL |
| [38] |
K.C. Mills, B.J. Keene, Int. Mater. Rev. 35 (1990) 185-216.
DOI URL |
| [39] | C. Ma, J. Zhao, C. Cao, T.-C. Lin, X. Li, J. Manuf. Sci. E-ASME 138 (2016) 121002-121006. |
| [40] |
K. Arafune, A. Hirata, J. Cryst. Growth 197 (1999) 811-817.
DOI URL |
| [41] |
A. Bahrami, D.T. Valentine, D.K. Aidun, Int. J. Mech. Sci. 93 (2015) 111-119.
DOI URL |
| [1] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
| [2] | Enkang Hao, Yulong An, Jie Chen, Xiaoqin Zhao, Guoliang Hou, Jianmin Chen, Meizhen Gao, Fengyuan Yan. In-situ formation of layer-like Ag2MoO4 induced by high-temperature oxidation and its effect on the self-lubricating properties of NiCoCrAlYTa/Ag/Mo coatings [J]. J. Mater. Sci. Technol., 2021, 75(0): 164-173. |
| [3] | G. Karthick, Lavanya Raman, B.S. Murty. Phase evolution and mechanical properties of novel nanocrystalline Y2(TiZrHfMoV)2O7 high entropy pyrochlore [J]. J. Mater. Sci. Technol., 2021, 82(0): 214-226. |
| [4] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
| [5] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
| [6] | Jiayi Zhang, Yan Jin Lee, Hao Wang. Mechanochemical effect on the microstructure and mechanical properties in ultraprecision machining of AA6061 alloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 228-238. |
| [7] | Pengfei Gao, Mingwang Fu, Mei Zhan, Zhenni Lei, Yanxi Li. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39(0): 56-73. |
| [8] | Hao Yu, Wei Xu, Sybrand van der Zwaag. Microstructure and dislocation structure evolution during creep life of Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 45(0): 207-214. |
| [9] | Kai Wang, Lei Chen, Chenguang Xu, Wen Zhang, Zhanguo Liu, Yujin Wang, Jiahu Ouyang, Xinghong Zhang, Yudong Fu, Yu Zhou. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic [J]. J. Mater. Sci. Technol., 2020, 39(0): 99-105. |
| [10] | XiTing Zhong, Lei Wang, LinKe Huang, Feng Liu. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy [J]. J. Mater. Sci. Technol., 2020, 42(0): 241-253. |
| [11] | Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale [J]. J. Mater. Sci. Technol., 2020, 47(0): 177-189. |
| [12] | Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 59-69. |
| [13] | G.Y. Li, L.F. Cao, J.Y. Zhang, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun. An insight into Mg alloying effects on Cu thin films: microstructural evolution and mechanical behavior [J]. J. Mater. Sci. Technol., 2020, 57(0): 101-112. |
| [14] | panelJianwei Xu, Weidong Zeng, Dadi Zhou, Wei Chen, Shengtong He, Xiaoyong Zhang. Analysis of crystallographic orientation and morphology of microstructure during hot working for an alpha/beta titanium alloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 1-13. |
| [15] | Zhixin Zhang, Jiangkun Fan, Bin Tang, Hongchao Kou, Jian Wang, Xin Wang, Shiying Wang, Qingjiang Wang, Zhiyong Chen, Jinshan Li. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 49(0): 56-69. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
