J. Mater. Sci. Technol. ›› 2021, Vol. 82: 214-226.DOI: 10.1016/j.jmst.2020.12.025
• Research Article • Previous Articles Next Articles
G. Karthicka, Lavanya Ramana, B.S. Murtya,b,*()
Received:
2020-10-26
Revised:
2020-12-04
Accepted:
2020-12-06
Published:
2021-01-27
Online:
2021-01-27
Contact:
B.S. Murty
About author:
∗ Department of Metallurgical and Materials Engineer-ing, Indian Institute of Technology Madras, Chennai, 600036, India. E-mail address: bsm@iith.ac.in (B.S. Murty).G. Karthick, Lavanya Raman, B.S. Murty. Phase evolution and mechanical properties of novel nanocrystalline Y2(TiZrHfMoV)2O7 high entropy pyrochlore[J]. J. Mater. Sci. Technol., 2021, 82: 214-226.
No. | Composition | Synthesis Parameters | Consolidation techniques | Characterization techniques | Mechanical properties | Crystallite size (nm)/ grain size (μm) | Refs. |
---|---|---|---|---|---|---|---|
1 | (GdEuSmNdLaDyHo)2Zr2O7 | BM (10 h) + HT | CS 1500 °C - 40h | SEM, HRTEM, Raman and XRD | - | - | [ |
2 | (SmEuTbDyLu)2Zr2O7 | CP 600 °C - 2 h | SPS | XRD, SEM, TC | E -257 GPa | 4 μm (after sintering) | [ |
1700 °C - 30 s | H -12.42 GPa | ||||||
3 | (LaNdSmEuGd)2Zr2O7 | BM (10 h) + HT 600-1500 °C- 1 h | CS | XRD, SEM, TC | - | - | [ |
1500 °C - 3 h | |||||||
4 | (LaNdSmGdYb)2Zr2O7 | Combustion Synthesis 1200 °C - 2 h | CS | XRD, SEM, EBSD, UV-vis | - | 8-10 nm (for powders) /7 μm (after sintering) | [ |
1825 °C - 6 h | |||||||
5 | Sm2(TiZrHfSn)2O7 | BM (6 h) + HT | CS 1400-1600 °C -24 h | XRD, SEM, TC and Acoustic wave propagation | E -250 GPa, 229 GPa | - | [ |
Gd2(TiZrHfSn)2O7 | |||||||
6 | (LaCeNdSmEu)2Zr2O7 | CP 1300 °C -1 h | CS | XRD, SEM, TC and grain growth (1500 °C; 1-18 h) | - | 1.69-3.92 μm (after sintering) | [ |
Annealing 1500 °C - 1 h | 1600 °C - 1 h | ||||||
7 | (YYbErLu)2(Zr,Hf)2O7 | Solid state reaction (BM-8 h) | CS 1550 °C - 2 h/ SPS (1650 °C -0.5 h) | XRD, SEM, TC, CTE, grain growth (1450-1590 °C; 1-18 h) | - | 0.57-2.3 μm (after sintering) | [ |
8 | Y2Ti2O7 | RCP | SPS | XRD, SEM, Raman, NI | H - 18 GPa | 33 ± 5 (for powder) | [ |
700 °C - 0.17 h | 1250 °C - 0.08 h | E - 261 GPa | |||||
9 | Y2Ti2O7 | BM (20 h) | HP | XRD, SEM, NI, Flexural strength | H - 12 GPa | - | [ |
1200 °C- 5 h | 1500 °C- 1 h | E - 265 GPa | |||||
10 | Y2Ti2O7 | BM (36 h) | HP | XRD, VH, Fracture toughness | H - 11.4 GPa | - | [ |
1200 °C - 5 h | 1340 °C -4 h | ||||||
11 | Y2(TiZrHfMoV)2O7 (5C) | RCP | SPS | XRD, SEM, Raman, NI | E - 56 GPa | 12 ± 2 (for powder)/ 130 nm (after sintering) | Present work |
300 °C - 0.17 h | 1200 °C -0.08 h | ||||||
12 | Y2(TiHfMoV)2O7 (4C-Zr) | RCP | SPS | XRD, SEM, Raman, NI | H - 18 GPa | 18 ± 2 (for powder)/ 234 nm (after sintering) | Present work |
300 °C - 0.17 h | 1200 °C - 0.08 h | E- 146 GPa | |||||
13 | Y2 (TiZrHfMo)2O7 (4C-V) | RCP | SPS | XRD, SEM, Raman, NI | H- 21 GPa | 12 ± 2 (for powder)/119 nm (after sintering) | Present work |
300 °C - 0.17 h | 1200 °C -0.08 h | E - 209 GPa |
Table 1 Comparison of synthesis, consolidated parameters, and properties of high-entropy pyrochlore literature with present work.
No. | Composition | Synthesis Parameters | Consolidation techniques | Characterization techniques | Mechanical properties | Crystallite size (nm)/ grain size (μm) | Refs. |
---|---|---|---|---|---|---|---|
1 | (GdEuSmNdLaDyHo)2Zr2O7 | BM (10 h) + HT | CS 1500 °C - 40h | SEM, HRTEM, Raman and XRD | - | - | [ |
2 | (SmEuTbDyLu)2Zr2O7 | CP 600 °C - 2 h | SPS | XRD, SEM, TC | E -257 GPa | 4 μm (after sintering) | [ |
1700 °C - 30 s | H -12.42 GPa | ||||||
3 | (LaNdSmEuGd)2Zr2O7 | BM (10 h) + HT 600-1500 °C- 1 h | CS | XRD, SEM, TC | - | - | [ |
1500 °C - 3 h | |||||||
4 | (LaNdSmGdYb)2Zr2O7 | Combustion Synthesis 1200 °C - 2 h | CS | XRD, SEM, EBSD, UV-vis | - | 8-10 nm (for powders) /7 μm (after sintering) | [ |
1825 °C - 6 h | |||||||
5 | Sm2(TiZrHfSn)2O7 | BM (6 h) + HT | CS 1400-1600 °C -24 h | XRD, SEM, TC and Acoustic wave propagation | E -250 GPa, 229 GPa | - | [ |
Gd2(TiZrHfSn)2O7 | |||||||
6 | (LaCeNdSmEu)2Zr2O7 | CP 1300 °C -1 h | CS | XRD, SEM, TC and grain growth (1500 °C; 1-18 h) | - | 1.69-3.92 μm (after sintering) | [ |
Annealing 1500 °C - 1 h | 1600 °C - 1 h | ||||||
7 | (YYbErLu)2(Zr,Hf)2O7 | Solid state reaction (BM-8 h) | CS 1550 °C - 2 h/ SPS (1650 °C -0.5 h) | XRD, SEM, TC, CTE, grain growth (1450-1590 °C; 1-18 h) | - | 0.57-2.3 μm (after sintering) | [ |
8 | Y2Ti2O7 | RCP | SPS | XRD, SEM, Raman, NI | H - 18 GPa | 33 ± 5 (for powder) | [ |
700 °C - 0.17 h | 1250 °C - 0.08 h | E - 261 GPa | |||||
9 | Y2Ti2O7 | BM (20 h) | HP | XRD, SEM, NI, Flexural strength | H - 12 GPa | - | [ |
1200 °C- 5 h | 1500 °C- 1 h | E - 265 GPa | |||||
10 | Y2Ti2O7 | BM (36 h) | HP | XRD, VH, Fracture toughness | H - 11.4 GPa | - | [ |
1200 °C - 5 h | 1340 °C -4 h | ||||||
11 | Y2(TiZrHfMoV)2O7 (5C) | RCP | SPS | XRD, SEM, Raman, NI | E - 56 GPa | 12 ± 2 (for powder)/ 130 nm (after sintering) | Present work |
300 °C - 0.17 h | 1200 °C -0.08 h | ||||||
12 | Y2(TiHfMoV)2O7 (4C-Zr) | RCP | SPS | XRD, SEM, Raman, NI | H - 18 GPa | 18 ± 2 (for powder)/ 234 nm (after sintering) | Present work |
300 °C - 0.17 h | 1200 °C - 0.08 h | E- 146 GPa | |||||
13 | Y2 (TiZrHfMo)2O7 (4C-V) | RCP | SPS | XRD, SEM, Raman, NI | H- 21 GPa | 12 ± 2 (for powder)/119 nm (after sintering) | Present work |
300 °C - 0.17 h | 1200 °C -0.08 h | E - 209 GPa |
Fig. 2. (a) TG-DTA results of 5C hydroxide precipitates showing the onset of calcination temperature, XRD patterns with different calcination temperatures for 10 min of (b) 5C, (c) 4C-Ti, (d) 4C-Zr, (e) 4C-Hf, (f) 4C-Mo and (g) 4C-V HEP oxides.
Composition | Single phase | Secondary phase | Reason |
---|---|---|---|
5C | yes | - | Formation of higher oxidation state cations |
4C-Zr | yes | - | Formation of higher oxidation state cations |
4C-V | yes | - | Absence of V cation |
4C-Ti | - | Yes (YVO4) | Presence of uncompensated V and Mo cation |
4C-Mo | - | Yes (YVO4) | Presence of uncompensated V and Mo cation |
4C-Hf | - | Yes (YVO4 + pyrochlore phase) | Presence of uncompensated V and Mo cation |
Table 2 Summary of effect composition on phase formation.
Composition | Single phase | Secondary phase | Reason |
---|---|---|---|
5C | yes | - | Formation of higher oxidation state cations |
4C-Zr | yes | - | Formation of higher oxidation state cations |
4C-V | yes | - | Absence of V cation |
4C-Ti | - | Yes (YVO4) | Presence of uncompensated V and Mo cation |
4C-Mo | - | Yes (YVO4) | Presence of uncompensated V and Mo cation |
4C-Hf | - | Yes (YVO4 + pyrochlore phase) | Presence of uncompensated V and Mo cation |
Fig. 3. XRD patterns of HEP oxides (Single phase compositions) with different calcination time at a constant temperature of 300 °C for (a) 5C, (b) 4C-Zr and (c) 4C-V.
No. | Synthesis temperature (10 min duration) (oC) | Crystallite size (nm) | Lattice strain (ε) (%) | ||||
---|---|---|---|---|---|---|---|
5C | 4C-Zr | 4C-V | 5C | 4C-Zr | 4C-V | ||
1 | 300 | 27 | 29 | 28 | 0.4 | 0.5 | 0.4 |
2 | 400 | 22 | 55 | 25 | 0.4 | 0.6 | 0.4 |
3 | 500 | 19 | 35 | 26 | 0.6 | 0.5 | 0.4 |
4 | 600 | 20 | 48 | 30 | 0.6 | 0.7 | 0.5 |
5 | 700 | 15 | 47 | 25 | 0.4 | 0.8 | 0.4 |
6 | 800 | 15 | 69 | 25 | 0.3 | 0.8 | 0.4 |
No. | Synthesis time (300 °C constant temperature) (min) | Crystallite size (nm) | Lattice strain (ε) (%) | ||||
5C | 4C-Zr | 4C-V | 5C | 4C-Zr | 4C-V | ||
1 | 30 | 18 | 39 | 25 | 0.6 | 0.6 | 0.4 |
2 | 60 | 16 | 35 | 16 | 0.5 | 0.7 | 0.5 |
3 | 120 | 15 | 31 | 15 | 0.5 | 0.6 | 0.4 |
Table 3 Crystallite size and lattice strain of different HEP compositions at different synthesis temperature and time.
No. | Synthesis temperature (10 min duration) (oC) | Crystallite size (nm) | Lattice strain (ε) (%) | ||||
---|---|---|---|---|---|---|---|
5C | 4C-Zr | 4C-V | 5C | 4C-Zr | 4C-V | ||
1 | 300 | 27 | 29 | 28 | 0.4 | 0.5 | 0.4 |
2 | 400 | 22 | 55 | 25 | 0.4 | 0.6 | 0.4 |
3 | 500 | 19 | 35 | 26 | 0.6 | 0.5 | 0.4 |
4 | 600 | 20 | 48 | 30 | 0.6 | 0.7 | 0.5 |
5 | 700 | 15 | 47 | 25 | 0.4 | 0.8 | 0.4 |
6 | 800 | 15 | 69 | 25 | 0.3 | 0.8 | 0.4 |
No. | Synthesis time (300 °C constant temperature) (min) | Crystallite size (nm) | Lattice strain (ε) (%) | ||||
5C | 4C-Zr | 4C-V | 5C | 4C-Zr | 4C-V | ||
1 | 30 | 18 | 39 | 25 | 0.6 | 0.6 | 0.4 |
2 | 60 | 16 | 35 | 16 | 0.5 | 0.7 | 0.5 |
3 | 120 | 15 | 31 | 15 | 0.5 | 0.6 | 0.4 |
Element | Y | Ti | Zr | Hf | Mo | V | O | Sum of Total Charge | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oxidation state | +3 | +2 | +4 | +4 | +4 | +4 | +6 | +3 | +4 | +5 | -2 | 10.73 |
Cations (%) | 18.2 | 3.16 | 0.47 | 3.64 | 3.64 | 0.68 | 2.96 | 0.76 | 1.12 | 1.75 | 53.32 | Metal vacancy 10.73/4 = 2.68 |
Normalised value | 54.6 | 6.33 | 1.91 | 14.56 | 14.56 | 2.73 | 17.73 | 2.28 | 4.49 | 8.77 | -117.63 |
Table 4 Electro neutrality calculation of 5C and quantification of each cation with their various oxidation state.
Element | Y | Ti | Zr | Hf | Mo | V | O | Sum of Total Charge | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oxidation state | +3 | +2 | +4 | +4 | +4 | +4 | +6 | +3 | +4 | +5 | -2 | 10.73 |
Cations (%) | 18.2 | 3.16 | 0.47 | 3.64 | 3.64 | 0.68 | 2.96 | 0.76 | 1.12 | 1.75 | 53.32 | Metal vacancy 10.73/4 = 2.68 |
Normalised value | 54.6 | 6.33 | 1.91 | 14.56 | 14.56 | 2.73 | 17.73 | 2.28 | 4.49 | 8.77 | -117.63 |
Elements (N = 3) (Atomic %) | Powders | Pellets (1400 °C) | Pellets (1200 °C) | ||||||
---|---|---|---|---|---|---|---|---|---|
5C | 4C-Zr | 4C-V | 5C | 4C-Zr | 4C-V | 5C | 4C-Zr | 4C-V | |
Y | 50.2 ± 0.6 | 48.9 ± 0.2 | 52.4 ± 0.6 | 42.5 ± 0.6 | 46.6 ± 0.3 | 43.5 ± 0.1 | 47.8 ± 0.4 | 48.7 ± 1.7 | 43.1 ± 0.1 |
Ti | 12.1 ± 0.1 | 14.5 ± 0.1 | 12.4 ± 0.2 | 10.5 ± 0.1 | 13.4 ± 0.3 | 13.5 ± 0.1 | 12.8 ± 0.1 | 15.1 ± 1.5 | 13.5 ± 0.1 |
Zr | 8.1 ± 0.3 | - | 14.8 ± 0.1 | 17.4 ± 0.1 | - | 21.3 ± 0.1 | 9.8 ± 0.1 | - | 21.3 ± 0.1 |
Hf | 8.5 ± 0.1 | 9.2 ± 0.2 | 8.3 ± 0.3 | 7.8 ± 0.1 | 9.7 ± 0.2 | 9.4 ± 0.1 | 8.5 ± 0.1 | 10.6 ± 0.1 | 9.43 ± 0.1 |
Mo | 8.9 ± 0.1 | 13.9 ± 0.1 | 11.9 ± 0.2 | 10.8 ± 0.2 | 16.7 ± 0.1 | 12.1 ± 0.1 | 8.1 ± 0.2 | 10.6 ± 1.2 | 12.1 ± 0.1 |
V | 12.1 ± 0.2 | 13.3 ± 0.2 | - | 10.9 ± 0.1 | 13.5 ± 0.1 | - | 12.8 ± 0.1 | 14.8 ± 1.6 | - |
Table 5 Overall chemical composition of HEP through EDS spectra for all compositions.
Elements (N = 3) (Atomic %) | Powders | Pellets (1400 °C) | Pellets (1200 °C) | ||||||
---|---|---|---|---|---|---|---|---|---|
5C | 4C-Zr | 4C-V | 5C | 4C-Zr | 4C-V | 5C | 4C-Zr | 4C-V | |
Y | 50.2 ± 0.6 | 48.9 ± 0.2 | 52.4 ± 0.6 | 42.5 ± 0.6 | 46.6 ± 0.3 | 43.5 ± 0.1 | 47.8 ± 0.4 | 48.7 ± 1.7 | 43.1 ± 0.1 |
Ti | 12.1 ± 0.1 | 14.5 ± 0.1 | 12.4 ± 0.2 | 10.5 ± 0.1 | 13.4 ± 0.3 | 13.5 ± 0.1 | 12.8 ± 0.1 | 15.1 ± 1.5 | 13.5 ± 0.1 |
Zr | 8.1 ± 0.3 | - | 14.8 ± 0.1 | 17.4 ± 0.1 | - | 21.3 ± 0.1 | 9.8 ± 0.1 | - | 21.3 ± 0.1 |
Hf | 8.5 ± 0.1 | 9.2 ± 0.2 | 8.3 ± 0.3 | 7.8 ± 0.1 | 9.7 ± 0.2 | 9.4 ± 0.1 | 8.5 ± 0.1 | 10.6 ± 0.1 | 9.43 ± 0.1 |
Mo | 8.9 ± 0.1 | 13.9 ± 0.1 | 11.9 ± 0.2 | 10.8 ± 0.2 | 16.7 ± 0.1 | 12.1 ± 0.1 | 8.1 ± 0.2 | 10.6 ± 1.2 | 12.1 ± 0.1 |
V | 12.1 ± 0.2 | 13.3 ± 0.2 | - | 10.9 ± 0.1 | 13.5 ± 0.1 | - | 12.8 ± 0.1 | 14.8 ± 1.6 | - |
Fig. 6. (a) Raman spectra fitted traces for HEP powders (5C, 4C-Zr, and 4C-V), (b) Fluorite disorderness and bond length for 5C, 4C-Zr, and 4C-V HEP powders.
Phase fraction - XRD (RIR) | Phase fraction - SEM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compositions/ phases | pyrochlore | Y2Hf2O7 | V3O5 | Mo2C | pyrochlore | Mo2C | Compositions (N = 3) | 5C | 4C-Zr | 4C-V | 5C | 4C- Zr | 4C-V |
1400 °C (%) | 1200 °C (%) | 1400 °C (%) | 1200 °C (%) | ||||||||||
5C | 60 | 27.5 | 4.5 | 8 | 100 | - | White region | 3.5 ± 1.5 | 2.7 ± 0.4 | 1.3 ± 0.8 | - | - | 0.7 ± 0.6 |
4C-Zr | 82.8 | - | 12.1 | 5.1 | 100 | - | Light grey region | 88.5 | 85.1 | 98.7 | 100 | 100 | 99.3 |
4C-V | 93 | - | - | 7 | 96 | 4 | Dark grey region | 8 ± 0.4 | 12.2 ± 0.1 | - | - | - | - |
Table 6 Phase fraction of HEP pellets through XRD and SEM analysis for all compositions.
Phase fraction - XRD (RIR) | Phase fraction - SEM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compositions/ phases | pyrochlore | Y2Hf2O7 | V3O5 | Mo2C | pyrochlore | Mo2C | Compositions (N = 3) | 5C | 4C-Zr | 4C-V | 5C | 4C- Zr | 4C-V |
1400 °C (%) | 1200 °C (%) | 1400 °C (%) | 1200 °C (%) | ||||||||||
5C | 60 | 27.5 | 4.5 | 8 | 100 | - | White region | 3.5 ± 1.5 | 2.7 ± 0.4 | 1.3 ± 0.8 | - | - | 0.7 ± 0.6 |
4C-Zr | 82.8 | - | 12.1 | 5.1 | 100 | - | Light grey region | 88.5 | 85.1 | 98.7 | 100 | 100 | 99.3 |
4C-V | 93 | - | - | 7 | 96 | 4 | Dark grey region | 8 ± 0.4 | 12.2 ± 0.1 | - | - | - | - |
Fig. 8. SEM BSE micrographs of HEP pellets sintered at 1400 °C, (a) 5C, (b) 4C-Zr and (c) 4C-V, HEP pellets sintered at 1200 °C (d) 5C, (e) 4C-Zr, and (f) 4C-V.
Fig. 12. Inverse pole figure of the HEP pellets sintered at 1400 °C, obtained through EBSD technique, (a) 4C-V, (c) 4C-Zr and (e) 5C, Grain size distribution chart of the polished surface of (b) 4C-V, (d) 4C-Zr, and (f) 5C.
[1] |
W. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61 (2018) 2-22.
DOI URL |
[2] | B.S. Murty, J.W. Yeh, S. Ranganathan, P.P. Bhattacharjee, Elsevier, 2019. |
[3] |
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.P. Maria, Nat. Commun. 6 (2015), 8485.
DOI URL |
[4] |
A.J. Wright, Q. Wang, C. Huang, A. Nieto, R. Chen, J. Luo, J. Eur. Ceram. Soc. 40 (2020) 2120-2129.
DOI URL |
[5] |
T. Parida, A. Karati, K. Guruvidyathri, B.S. Murty, G. Markandeyulu, Scr. Mater. 178 (2020) 513-517.
DOI URL |
[6] |
S. Zhou, Y. Pu, Q. Zhang, R. Shi, X. Guo, W. Wang, J. Ji, T. Wei, T. Ouyang, Ceram. Int. 46 (2020) 7430-7437.
DOI URL |
[7] |
K. Ren, Q. Wang, G. Shao, X. Zhao, Y. Wang, Scr. Mater. 178 (2020) 382-386.
DOI URL |
[8] |
D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Phys. Status Solidi - Rapid Res. Lett. 10 (2016) 328-333.
DOI URL |
[9] |
A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco, B. Breitung, Adv. Mater. 31 (2019), 1806236.
DOI URL |
[10] | W. Hong, F. Chen, Q. Shen, Y.H. Han, W.G. Fahrenholtz, L. Zhang, J. Am. Ceram. Soc. 102 (2019) 2228-2237. |
[11] | M.A. Subramanian, G. Aravamudan, G.V. Subba Rao, Prog.Solid State Chem. 15 (1983) 55-143. |
[12] |
T. Wei, Y. Zhang, L. Kong, Y.J. Kim, A. Xu, I. Karatchevtseva, N. Scales, D.J. Gregg, J. Eur. Ceram. Soc. 39 (2019) 1546-1554.
DOI URL |
[13] |
L.C. Wen, H.Y. Hsieh, Y.H. Lee, S.C. Chang, H.C.I. Kao, H.S. Sheu, I.N. Lin, J.C. Chang, M.C. Lee, Y.S. Lee, Solid State Ion. 206 (2012) 39-44.
DOI URL |
[14] | V. Trummel, S.K. Gupta, M. Pokhrel, D. Wall, Y. Mao, J. Lumin. 207 (2019) 1-13. |
[15] |
J.Y. Ding, Y. Xiao, Z.F. Wang, L.X. Wang, Q.T. Zhang, J. Inorg. Mater. 26 (2011) 327-331 (in Chinese).
DOI URL |
[16] |
L. Raman, K. Gothandapani, B.S. Murty, Def. Sci. J. 66 (2016) 316-322.
DOI URL |
[17] |
T. Gadipelly, A. Dasgupta, C. Ghosh, V. Krupa, D. Sornadurai, B.K. Sahu, S. Dhara, J. Alloys. Compd. 814 (2020), 152273.
DOI URL |
[18] |
L.F. He, J. Shirahata, T. Nakayama, T. Suzuki, H. Suematsu, I. Ihara, Y.W. Bao, T. Komatsu, K. Niihara, Scr. Mater. 64 (2011) 548-551.
DOI URL |
[19] |
S.T. Nguyen, T. Nakayama, H. Suematsu, T. Suzuki, M. Nanko, H.B. Cho, M.T.T. Huynh, W. Jiang, K. Niihara, J. Eur. Ceram. Soc. 35 (2015) 2651-2662.
DOI URL |
[20] |
G. Karthick, A. Karati, B.S. Murty, J. Alloys. Compd. 837 (2020), 155491.
DOI URL |
[21] |
A.J. Wright, Q. Wang, S.T. Ko, K.M. Chung, R. Chen, J. Luo, Scr. Mater. 181 (2020) 76-81.
DOI URL |
[22] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 19 (2004) 3-20.
DOI URL |
[23] |
N.J. Usharani, R. Shringi, H. Sanghavi, S. Subramanian, S.S. Bhattacharya, Dalton Trans. 49 (2020) 7123-7132.
DOI URL |
[24] |
G. Herrera, J. Jiménez-Mier, R.G. Wilks, A. Moewes, W. Yang, J. Denlinger, J. Mater. Sci. 48 (2013) 6437-6444.
DOI URL |
[25] |
E. Reynolds, P.E.R. Blanchard, Q. Zhou, B.J. Kennedy, Z. Zhang, L.Y. Jang, Phys. Rev. B-Condens. Matter Mater. Phys. 85 (2012), 132101.
DOI URL |
[26] |
K. Zhang, W. Li, J. Zeng, T. Deng, B. Luo, H. Zhang, X. Huang, J. Alloys. Compd. 817 (2020), 153328.
DOI URL |
[27] |
W. Qin, T. Nagase, Y. Umakoshi, J.A. Szpunar, Philos. Mag. Lett. 88 (2008) 169-179.
DOI URL |
[28] |
B. Choudhury, P. Chetri, A. Choudhury, J. Exp. Nanosci. 10 (2015) 103-114.
DOI URL |
[29] |
R. Kaufmann, H. Klewe-Nebenius, H. Moers, G. Pfennig, H. Jenett, H.J. Ache, Surf. Interface Anal. 11 (1988) 502-509.
DOI URL |
[30] |
C. Morant, L. Galán, J.M. Sanz, Surf. Interface Anal. 16 (1990) 304-308.
DOI URL |
[31] |
M. Lundholm, H. Siegbahn, S. Holmberg, M. Arbman, J. Electron Spectros. Relat. Phenomena 40 (1986) 163-180.
DOI URL |
[32] |
S. Kumar, H.C. Gupta, Solid State Sci. 14 (2012) 1405-1411.
DOI URL |
[33] |
D. Joseph, C. Kaliyaperumal, S. Mumoorthy, T. Paramasivam, Ceram. Int. 44 (2018) 5426-5432.
DOI URL |
[34] |
M. Abdou, S.K. Gupta, J.P. Zuniga, Y. Mao, Mater. Chem. Front. 2 (2018) 2201-2211.
DOI URL |
[35] |
M. Glerup, O.F. Nielsen, F.W. Poulsen, J. Solid State Chem. 160 (2001) 25-32.
DOI URL |
[36] |
A.F. Fuentes, K. Boulahya, M. MacZka, J. Hanuza, U. Amador, Solid State Sci. 7 (2005) 343-353.
DOI URL |
[37] |
C. Kaliyaperumal, A. Sankarakumar, J. Palanisamy, T. Paramasivam, Mater. Lett. 228 (2018) 493-496.
DOI URL |
[38] |
N.J. Usharani, S.S. Bhattacharya, Ceram. Int. 46 (2020) 5671-5680.
DOI URL |
[39] |
N. Nishiyama, T. Taniguchi, H. Ohfuji, K. Yoshida, F. Wakai, B.N. Kim, H. Yoshida, Y. Higo, A. Holzheid, O. Beermann, T. Irifune, Y. Sakka, K.I. Funakoshi, Scr. Mater. 69 (2013) 362-365.
DOI URL |
[40] |
S. Guicciardi, A. Balbo, D. Sciti, C. Melandri, G. Pezzotti, J. Eur. Ceram. Soc. 27 (2007) 1399-1404.
DOI URL |
[41] |
C. Wan, Z. Qu, A. Du, W. Pan, Acta Mater. 57 (2009) 4782-4789.
DOI URL |
[42] |
Z. Teng, L. Zhu, Y. Tan, S. Zeng, Y. Xia, Y. Wang, H. Zhang, J. Eur. Ceram. Soc. 40 (2020) 1639-1643.
DOI URL |
[43] |
F. Li, L. Zhou, J.-X. Liu, Y. Liang, G.J. Zhang, J. Adv. Ceram. 8 (2019) 576-582.
DOI URL |
[44] |
Z. Zhao, H. Xiang, F.Z. Dai, Z. Peng, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 2647-2651.
DOI URL |
[45] |
Z. Zhao, H. Chen, H. Xiang, F.Z. Dai, X. Wang, W. Xu, K. Sun, Z. Peng, Y. Zhou, J. Mater. Sci. Technol. 39 (2020) 167-172.
DOI URL |
[1] | Jiayi Zhang, Yan Jin Lee, Hao Wang. Mechanochemical effect on the microstructure and mechanical properties in ultraprecision machining of AA6061 alloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 228-238. |
[2] | Kai Wang, Lei Chen, Chenguang Xu, Wen Zhang, Zhanguo Liu, Yujin Wang, Jiahu Ouyang, Xinghong Zhang, Yudong Fu, Yu Zhou. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic [J]. J. Mater. Sci. Technol., 2020, 39(0): 99-105. |
[3] | Ruihong Wang, Shengyu Jiang, Bao’an Chen, Zhixiang Zhu. Size effect in the Al3Sc dispersoid-mediated precipitation and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2020, 57(0): 78-84. |
[4] | Z.C. Luo, H.P. Wang. Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti-Al alloys [J]. J. Mater. Sci. Technol., 2020, 40(0): 47-53. |
[5] | L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 42(0): 85-96. |
[6] | Wei Li, Martina Vittorietti, Geurt Jongbloed, Jilt Sietsma. The combined influence of grain size distribution and dislocation density on hardness of interstitial free steel [J]. J. Mater. Sci. Technol., 2020, 45(0): 35-43. |
[7] | Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 140-145. |
[8] | G.Y. Li, L.F. Cao, J.Y. Zhang, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun. An insight into Mg alloying effects on Cu thin films: microstructural evolution and mechanical behavior [J]. J. Mater. Sci. Technol., 2020, 57(0): 101-112. |
[9] | Rita Maurya, Abdul Rahim Siddiqui, Prvan Kumar Katiyar, Kantesh Balani. Mechanical, tribological and anti-corrosive properties of polyaniline/graphene coated Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys [J]. J. Mater. Sci. Technol., 2019, 35(8): 1767-1778. |
[10] | Shengyu Jiang, Ruihong Wang. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2019, 35(7): 1354-1363. |
[11] | L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, J.W. Qiao. Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2019, 35(5): 917-925. |
[12] | Gonçalo L. Sorger, J.P. Oliveira, Patrick L. Inácio, Norbert Enzinger, Pedro Vilaça, R.M. Miranda, Telmo G. Santos. Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials [J]. J. Mater. Sci. Technol., 2019, 35(3): 360-368. |
[13] | Richard Jenkins, Shuo Yin, Barry Aldwell, Morten Meyer, Rocco Lupoi. New insights into the in-process densification mechanism of cold spray Al coatings: Low deposition efficiency induced densification [J]. J. Mater. Sci. Technol., 2019, 35(3): 427-431. |
[14] | Zhiwu Xu, Zhengwei Li, Shude Ji, Liguo Zhang. Refill friction stir spot welding of 5083-O aluminum alloy [J]. J. Mater. Sci. Technol., 2018, 34(5): 878-885. |
[15] | Jie Hu, Xi’An Fan, Chengpeng Jiang, Bo Feng, Qiusheng Xiang, Guangqiang Li, Zhu He, Yawei Li. Introduction of porous structure: A feasible and promising method for improving thermoelectric performance of Bi2Te3 based bulks [J]. J. Mater. Sci. Technol., 2018, 34(12): 2458-2463. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||