J. Mater. Sci. Technol. ›› 2021, Vol. 83: 161-178.DOI: 10.1016/j.jmst.2020.12.049
• Research Article • Previous Articles Next Articles
Gui-Jia Gaoa, Mei-Qi Zenga, En-Liang Zhanga, Rong-Chang Zenga,b,*(
), Lan-Yue Cuia, Dao-kui Xuc, Feng-Qin Wanga,*(
), M. Bobby Kannand
Received:2020-10-06
Revised:2020-12-09
Accepted:2020-12-12
Published:2021-01-30
Online:2021-01-30
Contact:
Rong-Chang Zeng,Feng-Qin Wang
About author:skdwangfengqin@163.com (F.-Q. Wang).Gui-Jia Gao, Mei-Qi Zeng, En-Liang Zhang, Rong-Chang Zeng, Lan-Yue Cui, Dao-kui Xu, Feng-Qin Wang, M. Bobby Kannan. Dealloying corrosion of anodic and nanometric Mg41Nd5 in solid solution-treated Mg-3Nd-1Li-0.2Zn alloy[J]. J. Mater. Sci. Technol., 2021, 83: 161-178.
| Samples | #1 | #2 | #3 | #4 | #5 |
|---|---|---|---|---|---|
| Heating time (h) | 0 | 2 | 4 | 8 | 12 |
Table 1 Treatment of the samples at T4 state.
| Samples | #1 | #2 | #3 | #4 | #5 |
|---|---|---|---|---|---|
| Heating time (h) | 0 | 2 | 4 | 8 | 12 |
Fig. 1. Optical microstructure (a-e), SEM (a1-e1), EPMA images (a2-e2) and corresponding element energy spectrums (Mg (a3-e3), Nd (a4-e4) and Zn (a5-e5)) of samples #1, 2, 3, 4 and 5.
Fig. 4. (a), (b) TEM morphology of nanometric Mg41Nd5 particles, (c) the atomic percentage in corresponding EDS results and (d) selected area diffraction patterns of Mg41Nd5.
| Sample | C | Li | Nd | Mg | O | Zn |
|---|---|---|---|---|---|---|
| #1 | 70.77 | 1.72 | 0.62 | 3.12 | 23.66 | 0.12 |
| #2 | 53.53 | 1.21 | 1.23 | 5.89 | 37.98 | 0.17 |
| #3 | 50.06 | 2.39 | 1.17 | 4.25 | 41.97 | 0.20 |
| #4 | 34.00 | 6.51 | 1.33 | 9.04 | 48.91 | 0.21 |
| #5 | 45.70 | 3.11 | 1.04 | 7.14 | 42.89 | 0.13 |
Table 2 Chemical compositions of oxide films of samples #1-5 after solution heat treatment, at. %.
| Sample | C | Li | Nd | Mg | O | Zn |
|---|---|---|---|---|---|---|
| #1 | 70.77 | 1.72 | 0.62 | 3.12 | 23.66 | 0.12 |
| #2 | 53.53 | 1.21 | 1.23 | 5.89 | 37.98 | 0.17 |
| #3 | 50.06 | 2.39 | 1.17 | 4.25 | 41.97 | 0.20 |
| #4 | 34.00 | 6.51 | 1.33 | 9.04 | 48.91 | 0.21 |
| #5 | 45.70 | 3.11 | 1.04 | 7.14 | 42.89 | 0.13 |
Fig. 7. HERs of samples (1) #1, (2) #2, (3) #3, (4) #4 and (5) #5 during (a) 0-13 h, (b) 0-158 h and (c) 50-160 h of soaking in 3.5 wt.% NaCl solution.
Fig. 9. Corrosion morphologies with corrosion products of (a) #1, (b) #2, (c) #3, (d) #4, dealloying of second phases Mg41Nd5 emerged as the arrows, and (e) #5 samples at low magnification; and (f) #1, (g) #2, (h) #3, (i) #4 and (j) #5 samples at high magnification; corrosion morphology after removing corrosion products of (k) #1, (l) #2, (m) #3, (n) #4 and (o) #5 samples at low magnification; and (p) #1, (q) #2, (r) #3, (s) #4 and (t) #5 samples at high magnification.
Fig. 10. (a) Corresponding atomic percentage of the points in the SEM image of Fig. 9 via EDS and (b) XRD patterns of samples #1-5 after soaking in 3.5 wt. % NaCl solution for 158 h.
Fig. 12. (a) SEM image of Mg41Nd5 phase at high magnification after soaking for 1 h in 3.5 wt. % NaCl solution and (b), (c), (d), (e) and (f) EDS mapping images.
Fig. 13. In-situ observation of Mg41Nd5 soaked in 3.5 wt. % NaCl solution for (a) 0 h, (b) 1 h, (c) 3 h, (d) 5 h, (e) 7 h and (f) corrosion products removal of (e).
Fig. 14. Cross-sectional EPMA images of (a) #1, (b) #2, (c) #3, (d) #4 and (e) #5 after soaking for three days in 3.5 wt. % NaCl solution; (f) #1, (g) #2, (h) #3, (i) #4 and (j) #5 after soaking for five days and (k) #1, (l) #2, (m) #3, (n) #4 and (o) #5 after soaking for seven days.
Fig. 15. (a) Surface Volta potential map of #1, (b) OCP as a function of immersion time of (1) #1, (2) #2, (3) #3, (4) #4 and (5) #5 samples, (c) potentiodynamic polarization curves of (1) #1, (2) #2, (3) #3, (4) #4 and (5) #5 samples after the immersion in 3.5 wt.% NaCl solution for 10 min and (d) 1 h and (e) corresponding current density line chart.
Fig. 16. (a) Nyquist diagrams, (b) Bode plots of Zmod and (c) Bode plots of phase angle of (1) #1, (2) #2, (3) #3, (4) #4 and (5) #5 after the immersion in 3.5 wt.% NaCl solution for 10 min; (d) Nyquist diagrams, (e) Bode plots of Zmod and (f) Bode plots of phase angle of (1) #1, (2) #2, (3) #3, (4) #4 and (5) #5 after immersed in 3.5 wt.% NaCl solution for 1 h; (g) Equivalent circuits of samples #1-5 after immersion for 10 min, (h) sample #1 and (i) sample #2-5 after immersion for 1 h.
| Samples | Rs (Ω cm2) | CPE1 (Ω-1·Sn cm2) | n1 | Rct (Ω cm2) | CPE2 (Ω-1·Sn cm2) | n2 | R2 (Ω cm2) | L (H cm2) | RL Mg2+ (Ω cm2) |
|---|---|---|---|---|---|---|---|---|---|
| #1 | 19.20 ± 0.86 | (1.64 ± 0.12)×10-5 | 0.93 ± 0.03 | 548 ± 12 | (3.97 ± 0.22)×10-3 | 0.61 ± 0.02 | 235 ± 10 | (7.82 ± 1.12)×104 | 2124 ± 72 |
| #2 | 19.69 ± 0.72 | (1.80 ± 0.23)×10-5 | 0.94 ± 0.03 | 357 ± 8 | (5.13 ± 0.35)×10-3 | 0.37 ± 0.03 | 231 ± 13 | (3.54 ± 1.98)×104 | 817 ± 35 |
| #3 | 19.32 ± 1.06 | (1.93 ± 0.32)×10-5 | 0.94 ± 0.05 | 343 ± 5 | (5.86 ± 0.18)×10-3 | 0.56 ± 0.07 | 239 ± 18 | (1.90 ± 1.88 × 104 | 1052 ± 50 |
| #4 | 19.68 ± 1.43 | (1.75 ± 0.19)×10-5 | 0.94 ± 0.08 | 327 ± 6 | (7.46 ± 0.46)×10-3 | 0.38 ± 0.04 | 274 ± 29 | (2.32 ± 0.92)×104 | 1414 ± 44 |
| #5 | 19.30 ± 0.43 | (1.71 ± 0.18)×10-5 | 0.94 ± 0.06 | 244 ± 15 | (8.36 ± 0.44)×10-3 | 0.40 ± 0.06 | 252 ± 15 | (1.27 ± 1.06)×104 | 948 ± 25 |
Table 3 Electrochemical data obtained by equivalent circuit fitting EIS curves of the samples after immersed for 10 min.
| Samples | Rs (Ω cm2) | CPE1 (Ω-1·Sn cm2) | n1 | Rct (Ω cm2) | CPE2 (Ω-1·Sn cm2) | n2 | R2 (Ω cm2) | L (H cm2) | RL Mg2+ (Ω cm2) |
|---|---|---|---|---|---|---|---|---|---|
| #1 | 19.20 ± 0.86 | (1.64 ± 0.12)×10-5 | 0.93 ± 0.03 | 548 ± 12 | (3.97 ± 0.22)×10-3 | 0.61 ± 0.02 | 235 ± 10 | (7.82 ± 1.12)×104 | 2124 ± 72 |
| #2 | 19.69 ± 0.72 | (1.80 ± 0.23)×10-5 | 0.94 ± 0.03 | 357 ± 8 | (5.13 ± 0.35)×10-3 | 0.37 ± 0.03 | 231 ± 13 | (3.54 ± 1.98)×104 | 817 ± 35 |
| #3 | 19.32 ± 1.06 | (1.93 ± 0.32)×10-5 | 0.94 ± 0.05 | 343 ± 5 | (5.86 ± 0.18)×10-3 | 0.56 ± 0.07 | 239 ± 18 | (1.90 ± 1.88 × 104 | 1052 ± 50 |
| #4 | 19.68 ± 1.43 | (1.75 ± 0.19)×10-5 | 0.94 ± 0.08 | 327 ± 6 | (7.46 ± 0.46)×10-3 | 0.38 ± 0.04 | 274 ± 29 | (2.32 ± 0.92)×104 | 1414 ± 44 |
| #5 | 19.30 ± 0.43 | (1.71 ± 0.18)×10-5 | 0.94 ± 0.06 | 244 ± 15 | (8.36 ± 0.44)×10-3 | 0.40 ± 0.06 | 252 ± 15 | (1.27 ± 1.06)×104 | 948 ± 25 |
| Samples | Rs (Ω cm2) | CPE4(Ω-1·Sn cm2) | n1 | Rct (Ω cm2) | CPE3(Ω-1·Sn cm2) | n2 | R3 (Ω cm2) | LMg+ (H cm2) | RL Mg2+ (Ω cm2) | L (H cm2) | RL (Ω cm2) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| #1 | 17.62 ± 0.36 | (1.75 ± 0.13)×10-5 | 0.90 ± 0.01 | 314 ± 7 | (1.15 ± 0.88)×103 | 61 ± 10 | 68 ± 16 | 2353 ± 398 | |||
| #2 | 18.02 ± 0.44 | (2.56 ± 0.15)×10-5 | 0.89 ± 0.03 | 346 ± 12 | (5.24 ± 0.22)×10-3 | 0.45 ± 0.02 | 424 ± 19 | (1.2 ± 0.13)×104 | 865 ± 33 | — | — |
| #3 | 21.74 ± 0.52 | (1.98 ± 0.22)×10-5 | 0.91 ± 0.02 | 500 ± 24 | (5.08 ± 0.32)×10-3 | 0.60 ± 0.04 | 549 ± 36 | (3.32 ± 1.23)×104 | 1182 ± 56 | — | — |
| #4 | 17.56 ± 0.13 | (2.18 ± 0.41)×10-5 | 0.89 ± 0.03 | 419 ± 16 | (5.24 ± 0.43)×10-3 | 0.73 ± 0.08 | 401 ± 17 | (1.74 ± 1.56)×104 | 1205 ± 92 | — | — |
| #5 | 21.34 ± 0.24 | (2.18 ± 0.36)×10-5 | 0.90 ± 0.03 | 362 ± 27 | (5.87 ± 0.56 × 10-3 | 0.61 ± 1.02 | 316 ± 22 | (2.71 ± 0.98)×104 | 1552 ± 78 | — | — |
Table 4 Electrochemical data obtained by equivalent circuit fitting EIS curves of the samples after immersing for 1 h.
| Samples | Rs (Ω cm2) | CPE4(Ω-1·Sn cm2) | n1 | Rct (Ω cm2) | CPE3(Ω-1·Sn cm2) | n2 | R3 (Ω cm2) | LMg+ (H cm2) | RL Mg2+ (Ω cm2) | L (H cm2) | RL (Ω cm2) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| #1 | 17.62 ± 0.36 | (1.75 ± 0.13)×10-5 | 0.90 ± 0.01 | 314 ± 7 | (1.15 ± 0.88)×103 | 61 ± 10 | 68 ± 16 | 2353 ± 398 | |||
| #2 | 18.02 ± 0.44 | (2.56 ± 0.15)×10-5 | 0.89 ± 0.03 | 346 ± 12 | (5.24 ± 0.22)×10-3 | 0.45 ± 0.02 | 424 ± 19 | (1.2 ± 0.13)×104 | 865 ± 33 | — | — |
| #3 | 21.74 ± 0.52 | (1.98 ± 0.22)×10-5 | 0.91 ± 0.02 | 500 ± 24 | (5.08 ± 0.32)×10-3 | 0.60 ± 0.04 | 549 ± 36 | (3.32 ± 1.23)×104 | 1182 ± 56 | — | — |
| #4 | 17.56 ± 0.13 | (2.18 ± 0.41)×10-5 | 0.89 ± 0.03 | 419 ± 16 | (5.24 ± 0.43)×10-3 | 0.73 ± 0.08 | 401 ± 17 | (1.74 ± 1.56)×104 | 1205 ± 92 | — | — |
| #5 | 21.34 ± 0.24 | (2.18 ± 0.36)×10-5 | 0.90 ± 0.03 | 362 ± 27 | (5.87 ± 0.56 × 10-3 | 0.61 ± 1.02 | 316 ± 22 | (2.71 ± 0.98)×104 | 1552 ± 78 | — | — |
Fig. 17. (a) Simplified corrosion polarization diagram (anodic 1 for Mg, anodic 2 for Nd) and (b) schematic diagram of the dealloying mechanism of anodic Mg41Nd5 phase.
| [1] |
Z.-Y. Ding, L.-Y. Cui, R.-C. Zeng, Y.-B. Zhao, S.-K. Guan, D.-K. Xu, C.-G. Lin, J. Mater. Sci. Technol. 34 (9) (2018) 1550-1557.
DOI URL |
| [2] |
C. Li, D. Xu, B. Wang, L. Sheng, R. Wu, E. Han, J. Mater. Sci. Technol. 35 (11) (2019) 2477-2484.
DOI URL |
| [3] |
D. Xia, Y. Liu, S. Wang, R.-C. Zeng, Y. Liu, Y. Zheng, Y. Zhou, Sci. China Mater 62 (2) (2018) 256-272.
DOI URL |
| [4] | W. Yan, Y.J. Lian, Z.Y. Zhang, M.Q. Zeng, Z.Q. Zhang, Z.Z. Yin, L.Y. Cui, R.C. Zeng, Bioact. Mater. 5 (2) (2020) 318-333. |
| [5] |
J. Wang, L. Cui, Y. Ren, Y. Zou, J. Ma, C. Wang, Z. Zheng, X. Chen, R. Zeng, Y. Zheng, J. Mater. Sci. Technol. 47 (2020) 52-67.
DOI URL |
| [6] |
L. Guo, W. Wu, Y. Zhou, F. Zhang, R. Zeng, J. Zeng, J. Mater. Sci. Technol. 34 (9)(2018) 1455-1466.
DOI URL |
| [7] |
X. Wang, L. Li, Z.-H. Xie, G. Yu, Electrochim. Acta 283 (2018) 1845-1857.
DOI URL |
| [8] | L.-X. Li, Z.-H. Xie, C. Fernandez, L. Wu, D. Cheng, X.-H. Jiang, C.-J. Zhong, Electrochim. Acta 330 (2020), 135186. |
| [9] |
Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, J. Magnesium Alloys 7 (1) (2019) 58-71.
DOI URL |
| [10] |
Y. Pang, Q. Li, Scripta Mater. 130 (2017) 223-228.
DOI URL |
| [11] |
R.-c. Zeng, Y. Hu, F. Zhang, Y.-d. Huang, Z.-l. Wang, S.-q. Li, E.-h. Han, Trans. Nonferrous Met. Soc. China. 26 (2) (2016) 472-483.
DOI URL |
| [12] |
S.C. V, R. Dumpala, A.K. S, K. Vv, R.S. B, J. Magnesium Alloys. 6 (1) (2018) 52-58.
DOI URL |
| [13] |
Y. Zhang, J.-y. Li, P.K. Liaw, Y.-z. Xu, H.-y. Lai, J. Alloys. Compd. 769 (2018) 552-565.
DOI URL |
| [14] |
L.-Y. Cui, X.-H. Fang, W. Cao, R.-C. Zeng, S.-Q. Li, X.-B. Chen, Y.-H. Zou, S.-K. Guan, E.-H. Han, Appl. Surf. Sci. 457 (2018) 49-58.
DOI URL |
| [15] |
L. Guo, F. Zhang, L. Song, R.-C. Zeng, S.-Q. Li, E.-H. Han, Surf. Coat. Technol. 328 (2017) 121-133.
DOI URL |
| [16] |
Y. Zhao, Z. Zhang, L. Shi, F. Zhang, S. Li, R. Zeng, Mater. Lett. 237 (2019) 14-18.
DOI URL |
| [17] |
R. Gan, D. Wang, Z.-H. Xie, L. He, Corros. Sci. 123 (2017) 147-157.
DOI URL |
| [18] |
Z.H. Xie, D. Li, Z. Skeete, A. Sharma, C.J. Zhong, ACS Appl. Mater. Interfaces 9 (41) (2017) 36247-36260.
DOI URL |
| [19] |
Z.-Z. Yin, Z.-Q. Zhang, X.-J. Tian, Z.-L. Wang, R.-C. Zeng, Acta Metall. Sin.(Engl. Lett.) 34 (2021) 25-38.
DOI URL |
| [20] |
T. Zhang, G. Meng, Y. Shao, Z. Cui, F. Wang, Corros. Sci. 53 (9) (2011) 2934-2942.
DOI URL |
| [21] |
R. Arrabal, A. Pardo, M.C. Merino, M. Mohedano, P. Casajús, K. Paucar, G. Garcés, Corros. Sci. 55 (2012) 301-312.
DOI URL |
| [22] |
J. Liu, D. Bian, Y. Zheng, X. Chu, Y. Lin, M. Wang, Z. Lin, M. Li, Y. Zhang, S. Guan, Acta. Biomater. 102 (2020) 508-528.
DOI URL |
| [23] |
F. Penghuai, P. Liming, J. Haiyan, M. Lan, Z. Chunquan, Mater. Sci. Eng. A 496 (1-2) (2008) 177-188.
DOI URL |
| [24] |
X. Zhang, G. Yuan, J. Niu, P. Fu, W. Ding, J. Mech. Behav. Biomed. Mater. 9 (2012) 153-162.
DOI URL |
| [25] |
X. Zhang, G. Yuan, L. Mao, J. Niu, W. Ding, Mater. Lett. 66 (1) (2012) 209-211.
DOI URL |
| [26] |
L. Mao, H. Zhu, L. Chen, H. Zhou, G. Yuan, C. Song, J. Mater. Res. Technol. 9 (3)(2020) 6409-6419.
DOI URL |
| [27] |
G. Levy, E. Aghion, Acta Biomater. 9 (10) (2013) 8624-8630.
DOI URL |
| [28] |
C.Q. Li, D.K. Xu, X.B. Chen, B.J. Wang, R.Z. Wu, E.H. Han, N. Birbilis, Electrochim. Acta 260 (2018) 55-64.
DOI URL |
| [29] |
B. Wang, K. Xu, D. Xu, X. Cai, Y. Qiao, L. Sheng, J. Mater. Sci. Technol. 53 (2020) 102-111.
DOI URL |
| [30] |
R.-C. Zeng, L. Sun, Y.-F. Zheng, H.-Z. Cui, E.-H. Han, Corros. Sci. 79 (2014) 69-82.
DOI URL |
| [31] | M.A. Tao1, Foundry Technol. 37 (5) (2016) 863-866. |
| [32] | C. Liu, Y. Liu, Q. Wang, X. Liu, Y. Bao, G. Wu, J. Lu, Adv. Sci. Lett. (2020), 2001480. |
| [33] |
L. Cui, L. Sun, R. Zeng, Y. Zheng, S. Li, Sci. China Mater. 61 (4) (2018) 607-618.
DOI URL |
| [34] |
R. Zeng, W. Qi, F. Zhang, H. Cui, Y. Zheng, Prog. Nat. Sci. Mater. Int. 24 (5) (2014) 492-499.
DOI URL |
| [35] |
S.S. Nene, B.P. Kashyap, N. Prabhu, Y. Estrin, T. Al-Samman, J. Alloys. Compd. 615 (2014) 501-506.
DOI URL |
| [36] | L.-Y.C. Rong-Chang Zeng, Wei Ke, Acta Metall. Sin. 54 (9) (2018) 1215-1235. |
| [37] |
J. Wang, H. Zhou, L. Wang, S. Zhu, S. Guan, J. Mater. Sci. Technol. 35 (7) (2019) 1211-1217.
DOI URL |
| [38] | H. Qin, Y. Zhao, Z. An, M. Cheng, Q. Wang, T. Cheng, Q. Wang, J. Wang, Y. Jiang, X. Zhang, G. Yuan, J. Appl. Biomater. (2015) 211-220. |
| [39] |
Y. Song, E.-H. Han, D. Shan, C.D. Yim, B.S. You, Corros. Sci. 65 (2012) 322-330.
DOI URL |
| [40] | C.L. Zeng, Acta Metall. Sin. 54 (9) (2018) 1216-1235. |
| [41] |
S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Y. Bian, Acta Biomater. 6 (2) (2010) 626-640.
DOI URL |
| [42] |
X. Zhang, G. Yuan, L. Mao, J. Niu, P. Fu, W. Ding, J. Mech. Behav. Biomed. Mater. 7 (2012) 77-86.
DOI URL |
| [43] | L. Ximing, Rare Met. Mater. Eng. 40 (3) (2011) 530-533. |
| [44] | P.S, W.G.-h, L.I.U. Zhi-jie, D.I.N.G. Wen-jiang, Foundry Technol 33 (2012) 151-154. |
| [45] |
K.D. Ralston, N. Birbilis, C.H.J. Davies, Scr. Mater. 63 (12) (2010) 1201-1204.
DOI URL |
| [46] |
G.R. Argade, S.K. Panigrahi, R.S. Mishra, Corros. Sci. 58 (2012) 145-151.
DOI URL |
| [47] |
H. Feng, S. Liu, Y. Du, T. Lei, R. Zeng, T. Yuan, J. Alloys. Compd. 695 (2017) 2330-2338.
DOI URL |
| [48] |
Y. Song, E.-H. Han, D. Shan, C.D. Yim, B.S. You, Corros. Sci. 60 (2012) 238-245.
DOI URL |
| [49] |
B. Jiang, Q. Xiang, A. Atrens, J. Song, F. Pan, Corros. Sci. 126 (2017) 374-380.
DOI URL |
| [50] |
R.-c. Zeng, W. Dietzel, R. Zettler, W.-m. Gan, X.-x. Sun, Trans. Nonferrous Met. Soc. China. 24 (10) (2014) 3060-3069.
DOI URL |
| [51] |
J.-W. Chang, X.-W. Guo, P.-H. Fu, L.-M. Peng, W.-J. Ding, Electrochim. Acta 52 (9) (2007) 3160-3167.
DOI URL |
| [52] |
J. KubÁSek, D. VojtĔCh, Trans. Nonferrous Met. Soc. China. 23 (5) (2013) 1215-1225.
DOI URL |
| [53] |
C. Cai, R. Song, L. Wang, J. Li, Appl. Surf. Sci. 462 (2018) 243-254.
DOI URL |
| [54] |
J. Liu, Y. Song, J. Chen, P. Chen, D. Shan, E.-H. Han, Electrochim. Acta 189 (2016) 190-195.
DOI URL |
| [55] |
J.W. Seong, W.J. Kim, Corros. Sci. 98 (2015) 372-381.
DOI URL |
| [56] | A.D. Suedholz, N.T. Kirkland, R.G. Buchheit, N. Birbilis, Electrochem. Solid-State Lett. 14 (2) (2011) C5-C7. |
| [57] |
R. Zeng, K.U. Kainer, C. Blawert, W. Dietzel, J. Alloys. Compd. 509 (13) (2011) 4462-4469.
DOI URL |
| [58] |
Y. Song, D. Shan, E.-H. Han, J. Mater. Sci. Technol. 33 (9) (2017) 954-960.
DOI URL |
| [59] |
R.-L.J. Shuang Yu, Tao Zhang, Fu-Hui Wang, Jian Hou, Hui-Xia Zhang, Acta Metall. Sin. 32 (4) (2019) 433-442.
DOI URL |
| [60] |
H. Azzeddine, A. Hanna, A. Dakhouche, L. Rabahi, N. Scharnagl, M. Dopita, F. Brisset, A.-L. Helbert, T. Baudin, J. Alloys. Compd. 829 (2020), 154569.
DOI URL |
| [61] |
J. Zhang, B. Jiang, Q. Yang, D. Huang, A. Tang, F. Pan, Q. Han, J. Alloys. Compd. 849 (2020), 156619.
DOI URL |
| [62] | Y. Zhang, Y. Huang, F. Feyerabend, S. Gavras, N. Hort, Metall. Mater. Trans. A 55 (2020) 5498-5515. |
| [63] | Q. Jiang, D. Lu, N. Wang, X. Wang, J. Zhang, J. Duan, B. Hou, J. Magnesium Alloys. (2020), doi.org/10.1016/. |
| [64] |
S. Gorsse, C.R. Hutchinson, B. Chevalier, J.F. Nie, J. Alloys. Compd. 392 (1-2) (2005) 253-262.
DOI URL |
| [65] |
M.A. Easton, M.A. Gibson, D. Qiu, S.M. Zhu, J. Gröbner, R. Schmid-Fetzer, J.F. Nie, M.X. Zhang, Acta Mater. 60 (11) (2012) 4420-4430.
DOI URL |
| [66] |
C. Zhai, Q. Luo, Q. Cai, R. Guan, Q. Li, J. Alloys. Compd. 773 (2019) 202-209.
DOI URL |
| [67] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
| [68] | G. Williams, K. Gusieva, N. Birbilis, Corr. Houston Tx 68 (6) (2012) 489-498. |
| [69] | L. Mao, L. Shen, J. Niu, J. Zhang, W. Ding, Y. Wu, R. Fan, G. Yuan, Nanoscale Microscale Thermophys. Eng. 5 (2013) 9517-9522. |
| [70] |
Z.-Y. Ding, L.-Y. Cui, X.-B. Chen, R.-C. Zeng, S.-K. Guan, S.-Q. Li, F. Zhang, Y.-H. Zou, Q.-Y. Liu, J. Alloys. Compd. 764 (2018) 250-260.
DOI URL |
| [71] |
Z.-Q. Zhang, R.-C. Zeng, W. Yan, C.-G. Lin, L. Wang, Z.-L. Wang, D.-C. Chen, J. Alloys. Compd. 821 (2020), 153515.
DOI URL |
| [72] |
Q.-S. Yao, F. Zhang, L. Song, R.-C. Zeng, L.-Y. Cui, S.-Q. Li, Z.-L. Wang, E.-H. Han, J. Alloys. Compd. 764 (2018) 913-928.
DOI URL |
| [73] |
Z.-Q. Zhang, R.-C. Zeng, C.-G. Lin, L. Wang, X.-B. Chen, D.-C. Chen, J. Mater. Sci. Technol. 41 (2020) 43-55.
DOI URL |
| [74] |
L.-Y. Cui, S.-D. Gao, P.-P. Li, R.-C. Zeng, F. Zhang, S.-Q. Li, E.-H. Han, Corros. Sci. 118 (2017) 84-95.
DOI URL |
| [75] |
R.-C. Zeng, W.-C. Qi, H.-Z. Cui, F. Zhang, S.-Q. Li, E.-H. Han, Corros. Sci. 96 (2015) 23-31.
DOI URL |
| [76] |
J. Li, Q. Jiang, H. Sun, Y. Li, Corros. Sci. 111 (2016) 288-301.
DOI URL |
| [77] | W. Liu, Q. Li, M.-C. Li, Corros.Sci. 121 (2017) 72-83. |
| [78] |
J. Chen, J. Wang, E. Han, J. Dong, W. Ke, Electrochim. Acta 52 (9) (2007) 3299-3309.
DOI URL |
| [79] | M. Cihova, P. Schmutz, R. Schaublin, J.F. Loffler, Adv.Mater. 31 (2019), e1903080. |
| [80] | N. Birbilis, K.D. Ralston, S. Virtanen, H.L. Fraser, C.H.J. Davies, Corros. Eng., Sci. Technol. 45 (2013) 224-230. |
| [81] |
P.-p. Wu, F.-j. Xu, K.-k. Deng, F.-y. Han, Z.-z. Zhang, R. Gao, Corros. Sci. 127 (2017) 280-290.
DOI URL |
| [82] |
S. Cassineri, J. Duff, A. Cioncolini, M. Curioni, A. Banks, F. Scenini, Corros. Sci. 159 (2019), 108113.
DOI URL |
| [1] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
| [2] | Xinhua Wang, Lin Fan, Kangkang Ding, Likun Xu, Weimin Guo, Jian Hou, Tigang Duan. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment [J]. J. Mater. Sci. Technol., 2021, 64(0): 187-194. |
| [3] | Lin Lu, Qianqian Liu. Synergetic effects of photo-oxidation and biodegradation on failure behavior of polyester coating in tropical rain forest atmosphere [J]. J. Mater. Sci. Technol., 2021, 64(0): 195-202. |
| [4] | Xiumin Ma, Zheng Ma, Dongzhu Lu, Quantong Jiang, Leilei Li, Tong Liao, Baorong Hou. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light [J]. J. Mater. Sci. Technol., 2021, 64(0): 21-28. |
| [5] | Zibo Pei, Xuequn Cheng, Xiaojia Yang, Qing Li, Chenhan Xia, Dawei Zhang, Xiaogang Li. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64(0): 214-221. |
| [6] | Xin Wei, Dongmei Fu, Mindong Chen, Wei Wu, Dequan Wu, Chao Liu. Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environmentAlloying Elements [J]. J. Mater. Sci. Technol., 2021, 64(0): 222-232. |
| [7] | Rajendra Kurapati, Vincent Maurice, Antoine Seyeux, Lorena H. Klein, Dimitri Mercier, Grégory Chauveau, Catherine Grèzes-Besset, Loïc Berthod, Philippe Marcus. Advanced protection against environmental degradation of silver mirror stacks for space application [J]. J. Mater. Sci. Technol., 2021, 64(0): 1-9. |
| [8] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
| [9] | Ini-Ibehe Nabuk Etim, Junhua Dong, Jie Wei, Chen Nan, Durga Bhakta Pokharel, Aniefiok Joseph Umoh, Dake Xu, Mingzhong Su, Wei Ke. Effect of organic silicon quaternary ammonium salts on mitigating corrosion of reinforced steel induced by SRB in mild alkaline simulated concrete pore solution [J]. J. Mater. Sci. Technol., 2021, 64(0): 126-140. |
| [10] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
| [11] | A.C. Bouali, N.M. André, M.R. Silva Campos, M. Serdechnova, J.F. dos Santos, S.T. Amancio-Filho, M.L. Zheludkevich. Influence of LDH conversion coatings on the adhesion and corrosion protection of friction spot-joined AA2024-T3/CF-PPS [J]. J. Mater. Sci. Technol., 2021, 67(0): 197-210. |
| [12] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
| [13] | Yuwei Ye, Hao Chen, Yangjun Zou, Haichao Zhao. Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2021, 67(0): 226-236. |
| [14] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
| [15] | Dan Liu, Hongying Yang, Jianhui Li, Jiaqi Li, Yizhe Dong, Chuntian Yang, Yuting Jin, Lekbach Yassir, Zhong Li, David Hernandez, Dake Xu, Fuhui Wang, Jessica A. Smith. Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy [J]. J. Mater. Sci. Technol., 2021, 79(0): 101-108. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
