J. Mater. Sci. Technol. ›› 2022, Vol. 111: 211-223.DOI: 10.1016/j.jmst.2021.09.042
• Research Article • Previous Articles Next Articles
B.Q. Shia, L.Y. Zhaoa,e, X.L. Shangc, B.H. Niea,d, D.C. Chena,d, C.Q. Lib,*(), Y.Q. Chengb
Received:
2021-07-05
Revised:
2021-08-20
Accepted:
2021-09-05
Published:
2021-12-02
Online:
2021-12-02
Contact:
C.Q. Li
About author:
* E-mail address: chuanqiang.li@gdut.edu.cn (C.Q. Li).B.Q. Shi, L.Y. Zhao, X.L. Shang, B.H. Nie, D.C. Chen, C.Q. Li, Y.Q. Cheng. Reduction effect of final-pass heavy reduction rolling on the texture development, tensile property and stretch formability of ZWK100 alloy plates[J]. J. Mater. Sci. Technol., 2022, 111: 211-223.
Fig. 1. Typical optical microscopy (OM) images of the microstructures for different plates. (a, b) RR-0.4R upon rough rolling, (c, d) RR-0.4A upon rough rolling and intermediate annealing, (e, f) FHRR-H0.3R upon FHRR with 30% reduction, (g, h) FHRR-H0.5R upon FHRR with 50% reduction and (i, j) FHRR-H0.7R upon FHRR with 70% reduction.
Fig. 3. EBSD results of the RR-0.4A plate: (a) IPF image, (b) boundary mapping, (c) orientations of parent grains undergoing twins, (d) misorientation distribution, (e-g) (0001) pole figures for PG1, PG2 and PG3 and IGMA result, (h) orientation along the arrow in PG1, (i) IGMA result of all grains and (j) (0001) pole figure for all grains.
Fig. 6. The inverse pole figure (IPF) maps and corresponding PF (pole figure)-texture and IPF-texture with respect to RD analyzed by EBSD for the LRR-A, FHRR-H0.3A, FHRR-H0.5A and FHRR-H0.7A plates.
Sample | Empty Cell | Yield strength (MPa) | Ultimate tensile strength (MPa) | Uniform elongation | Elongation to failure |
---|---|---|---|---|---|
LRR-A | RD | 190.8 ± 6.9 | 246.6 ± 2.5 | 0.19±0.01 | 0.35±0.03 |
TD | 127.8 ± 0.1 | 213.8 ± 0.1 | 0.32±0.01 | 0.47±0.01 | |
45° | 135.6 ± 2.7 | 210.9 ± 2.0 | 0.31±0 | 0.46±0.01 | |
FHRR -H0.3A | RD | 108.1 ± 0.1 | 201.4 ± 1.1 | 0.33±0.01 | 0.46±0.01 |
TD | 97.0 ± 1.5 | 203.1 ± 1.0 | 0.40±0.04 | 0.54±0.03 | |
45° | 97.2 ± 2.5 | 189.6 ± 1.9 | 0.34±0.04 | 0.48±0.05 | |
FHRR -H0.5A | RD | 117.2 ± 6.6 | 209.8 ± 1.4 | 0.37±0.02 | 0.49±0.01 |
TD | 119.7 ± 0.9 | 211.1 ± 1.7 | 0.38±0.01 | 0.45±0 | |
45° | 123.1 ± 0.9 | 211.2 ± 0.7 | 0.37±0.02 | 0.49±0.01 | |
FHRR -H0.7A | RD | 125.3 ± 1.4 | 211.0 ± 1.0 | 0.34±0.03 | 0.47±0.03 |
TD | 121.1 ± 1.2 | 211.4 ± 1.1 | 0.37±0.01 | 0.50±0.04 | |
45° | 123.7 ± 0.9 | 206.7 ± 0.8 | 0.35±0.01 | 0.47±0.04 |
Table 1. Room-temperature mechanical properties along RD, TD and 45º for the ZWK100 alloy sheets under different conditions. Measurement data indicating mean ± standard deviation.
Sample | Empty Cell | Yield strength (MPa) | Ultimate tensile strength (MPa) | Uniform elongation | Elongation to failure |
---|---|---|---|---|---|
LRR-A | RD | 190.8 ± 6.9 | 246.6 ± 2.5 | 0.19±0.01 | 0.35±0.03 |
TD | 127.8 ± 0.1 | 213.8 ± 0.1 | 0.32±0.01 | 0.47±0.01 | |
45° | 135.6 ± 2.7 | 210.9 ± 2.0 | 0.31±0 | 0.46±0.01 | |
FHRR -H0.3A | RD | 108.1 ± 0.1 | 201.4 ± 1.1 | 0.33±0.01 | 0.46±0.01 |
TD | 97.0 ± 1.5 | 203.1 ± 1.0 | 0.40±0.04 | 0.54±0.03 | |
45° | 97.2 ± 2.5 | 189.6 ± 1.9 | 0.34±0.04 | 0.48±0.05 | |
FHRR -H0.5A | RD | 117.2 ± 6.6 | 209.8 ± 1.4 | 0.37±0.02 | 0.49±0.01 |
TD | 119.7 ± 0.9 | 211.1 ± 1.7 | 0.38±0.01 | 0.45±0 | |
45° | 123.1 ± 0.9 | 211.2 ± 0.7 | 0.37±0.02 | 0.49±0.01 | |
FHRR -H0.7A | RD | 125.3 ± 1.4 | 211.0 ± 1.0 | 0.34±0.03 | 0.47±0.03 |
TD | 121.1 ± 1.2 | 211.4 ± 1.1 | 0.37±0.01 | 0.50±0.04 | |
45° | 123.7 ± 0.9 | 206.7 ± 0.8 | 0.35±0.01 | 0.47±0.04 |
Sample | rRD | r45 | rTD | ravg | Δr2 |
---|---|---|---|---|---|
LRR-A | 1.29 | 1.16 | 0.98 | 1.14 | 0.31 |
FHRR-H0.3A | 1.50 | 1.11 | 1.16 | 1.26 | 0.39 |
FHRR-H0.5A | 1.16 | 1.14 | 1.10 | 1.14 | 0.06 |
FHRR-H0.7A | 0.99 | 1.08 | 1.10 | 1.06 | 0.11 |
Table 2. Planar and in-plane anisotropy of the ZWK100 alloy sheets under different conditions.
Sample | rRD | r45 | rTD | ravg | Δr2 |
---|---|---|---|---|---|
LRR-A | 1.29 | 1.16 | 0.98 | 1.14 | 0.31 |
FHRR-H0.3A | 1.50 | 1.11 | 1.16 | 1.26 | 0.39 |
FHRR-H0.5A | 1.16 | 1.14 | 1.10 | 1.14 | 0.06 |
FHRR-H0.7A | 0.99 | 1.08 | 1.10 | 1.06 | 0.11 |
Fig. 9. (a) The IPF maps and PF-texture for off-basal type (O-type) grains and basal type (B-type) grains in the RR0.4-A plate (after rough rolling and intermediate annealing), the SFs of different deformation modes for the grains with (b) O-type textures and (d) B-type textures, and (c) two specific orientations for parent grains with ideal O-type textures perpendicular to the ND and possible six {$10\bar{1}2$} twin variants with different SFs and resulting basal textures.
Fig. 10. The PF-texture and IPF-texture with respect to RD for the (a) FHRR-H0.3A and (b) FHRR-H0.7A sheets with different grain size (D) ranges, (c) local misorientation and grain boundary misorientation distributions for D in range of 5-10 μm and 10-15 μm of FHRR-0.3A sheet.
Σ | 1 | 7 | 10 | 11 | 13a | 14 | 17a | 18b | 19 | 25b |
---|---|---|---|---|---|---|---|---|---|---|
Angle (°) | 0 | 21.79 | 78.46 | 62.96 | 27.8 | 44.2 | 86.63 | 70.53 | 13.7 | 23.07 |
Axis | Any | [0001] | [ | [ | [0001] | [ | [ | [ | [0001] | [ |
Table 3. The possible near-CSL boundaries in Mg alloys with idea c/a of 1.633 [51].
Σ | 1 | 7 | 10 | 11 | 13a | 14 | 17a | 18b | 19 | 25b |
---|---|---|---|---|---|---|---|---|---|---|
Angle (°) | 0 | 21.79 | 78.46 | 62.96 | 27.8 | 44.2 | 86.63 | 70.53 | 13.7 | 23.07 |
Axis | Any | [0001] | [ | [ | [0001] | [ | [ | [ | [0001] | [ |
Fig. 11. Schmid factor distributions for (a) (0001)<$11\bar{2}0$> basal slip and (b) ($10\bar{1}2$)<$10\bar{1}1$> twin measured by EBSD for all the plates when the tensile stress is along the RD, 45° and TD.
Fig. 13. EBSD boundary misorientation maps, micro-texture and misorientation angle distributions of the RD and TD specimens of NRR-A sheet strained to 8%, the dotted lines indicating the (0001)<$10\bar{1}0$> texture component.
Fig. 14. The Erichsen values for the studied sheets and those in Refs. [[24], [25], [26], [27],29,54,62] as a function of Δr2, the dotted lines denoting the data for ZWK100 sheets processed by FHRR.
[1] | J.L. Wu, L. Jin, J. Dong, Wang F.H, S. Dong, J. Mater. Sci.Technol. 42 (2020) 177-191. |
[2] | B.W. Zhu, X. Liu, C. Xie, J. Su, P.C. Guo, C.P. Tang, W.H. Liu, J. Mater. Sci.Technol. 50 (2020) 59-65. |
[3] |
M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, B.H. Lu, Acta Mater. 157 (2018) 53-71.
DOI URL |
[4] | J. Zhao, B. Jiang, Y. Yuan, Q. Wang, M. Yuan, A. Tang, G. Huang, D. Zhang, F. Pan, J. Mater. Sci.Technol. 95 (2021) 20-29. |
[5] |
B. Song, N. Guo, T. Liu, Q. Yang, Mater. Des. 62 (2014) 352-360.
DOI URL |
[6] |
A. Imandoust, C.D. Barrett, A.L. Oppedal, W.R. Whittington, Y. Paudel, H. El Kadiri, Acta Mater. 138 (2017) 27-41.
DOI URL |
[7] |
R.K. Sabat, A.P. Brahme, R.K. Mishra, K. Inal, S. Suwas, Acta Mater. 161 (2018) 246-257.
DOI URL |
[8] |
J.P. Hadorn, K. Hantzsche, S. Yi, J. Bohlen, D. Letzig, S.R. Agnew, Metall. Mater. Trans. A 43 (2012) 1363-1375.
DOI URL |
[9] |
B.Q. Shi, R.S. Chen, W. Ke, Mater. Sci. Eng. A 560 (2013) 62-70.
DOI URL |
[10] |
J.P. Hadorn, K. Hantzsche, S. Yi, J. Bohlen, D. Letzig, J.A. Wollmershauser, S.R. Agnew, Metall. Mater. Trans. A 43 (2011) 1347-1362.
DOI URL |
[11] |
S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, Acta Mater. 59 (2011) 429-439.
DOI URL |
[12] |
S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, D. Raabe, Acta Mater. 60 (2012) 3011-3021.
DOI URL |
[13] |
N. Stanford, M.R. Barnett, Mater. Sci. Eng. A 496 (2008) 399-408.
DOI URL |
[14] | R.G. Li, H.R. Li, H.C. Pan, D.S. Xie, J.H. Zhang, D.Q. Fang, Y.Q. Dai, D.Y. Zhao, H. Zhang, Scr.Mater. 193 (2021) 142-146. |
[15] | T.C. Xie, H. Shi, H.B. Wang, Q. Luo, Q. Li, K.C. Chou, J. Mater. Sci.Technol. 97 (2022) 147-155. |
[16] |
J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, S.R. Agnew, Acta Mater. 55 (2007) 2101-2112.
DOI URL |
[17] | L.W.F. Mackenzie, M.O. Pekguleryuz, Scr.Mater. 59 (2008) 665-668. |
[18] |
H. Yan, S.W. Xu, R.S. Chen, S. Kamado, T. Honma, E.H. Han, J. Alloy. Compd. 566 (2013) 98-107.
DOI URL |
[19] | Y. Chino, K. Sassa, M. Mabuchi, Mater. Sci. Eng. A 513 (2009) 394-400. |
[20] |
B.C. Suh, J.H. Kim, H.H. Ji, M.S. Shim, N.J. Kim, Sci. Rep. 6 (2016) 22364.
DOI URL |
[21] | B.C. Suh, M.S. Shim, K.S. Shin, N.J. Kim, Scr.Mater. 84-85 (2014) 1-6. |
[22] |
S. Yi, J. Bohlen, F. Heinemann, D. Letzig, Acta Mater. 58 (2010) 592-605.
DOI URL |
[23] |
S. Pan, Y. Xin, G. Huang, L. Qi, F. Guo, Q. Liu, Mater. Sci. Eng. A 653 (2016) 93-98.
DOI URL |
[24] |
X. Huang, K. Suzuki, Y. Chino, M. Mabuchi, J. Alloy. Compd. 509 (2011) 7579-7584.
DOI URL |
[25] |
X. Huang, Y. Chino, M. Mabuchi, M. Matsuda, Mater. Sci. Eng. A 611 (2014) 152-161.
DOI URL |
[26] |
X. Huang, K. Suzuki, Y. Chino, M. Mabuchi, J. Alloy. Compd. 632 (2015) 94-102.
DOI URL |
[27] |
X. Huang, K. Suzuki, N. Saito, Scr. Mater. 60 (2009) 651-654.
DOI URL |
[28] |
T. Zhou, Z. Yang, D. Hu, T. Feng, M. Yang, X. Zhai, J. Alloy. Compd. 650 (2015) 436-443.
DOI URL |
[29] |
B.Q. Shi, Y.H. Xiao, X.L. Shang, Y.Q. Cheng, H. Yan, Y. Dong, A.F. Chen, X.L. Fu, R.S. Chen, W. Ke, Mater. Sci. Eng. A 746 (2019) 115-126.
DOI URL |
[30] |
D. Guan, W.M. Rainforth, J. Gao, J. Sharp, B. Wynne, L. Ma, Acta Mater. 135 (2017) 14-24.
DOI URL |
[31] |
M.G. Jiang, H. Yan, R.S. Chen, J. Alloy. Compd. 650 (2015) 399-409.
DOI URL |
[32] |
M.R. Barnett, Mater. Sci. Eng. A 464 (2007) 8-16.
DOI URL |
[33] |
J. Koike, Y. Sato, D. Ando, Mater. Trans. 49 (2008) 2792-2800.
DOI URL |
[34] |
M.R. Barnett, Mater. Sci. Eng. A 464 (2007) 1-7.
DOI URL |
[35] |
Y.B. Chun, C.H.J. Davies, Metall. Mater. Trans. A 42 (2011) 4113-4125.
DOI URL |
[36] |
C. Zener, J.H. Hollomon, J Appl. Phys. 15 (1944) 22-32.
DOI URL |
[37] |
J.P. Hadorn, K. Hantzsche, S. Yi, J. Bohlen, D. Letzig, S.R. Agnew, Metall. Mater. Trans. A 43 (2012) 1363-1375.
DOI URL |
[38] |
B.Q. Shi, L.Y. Zhao, D.C. Chen, C.Q. Li, Y. Dong, D. Wu, R.S. Chen, W. Ke, Mater. Sci. Eng. A 772 (2020) 138786.
DOI URL |
[39] | W.F. Hosford, The Mechanics of Crystals and Textured Polycrystals, Oxford Uni- versity Press, 1993. |
[40] |
Y. Chino, K. Kimura, M. Mabuchi, Acta Mater. 57 (2009) 1476-1485.
DOI URL |
[41] |
T.D. Berman, T.M. Pollock, J.W. Jones, Metall. Mater. Trans. A 46 (2015) 2986-2998.
DOI URL |
[42] |
A.C. hapuis, J.H. Driver, Acta Mater. 59 (2011) 1986-1994.
DOI URL |
[43] |
S.-G. Hong, S.H. Park, C.S. Lee, Scr. Mater. 64 (2011) 145-148.
DOI URL |
[44] |
S.R. Agnew, M.H. Yoo, C.N. Tomé, Acta Mater. 49 (2001) 4277-4289.
DOI URL |
[45] | F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealingphenom- ena, 2nd Ed., Elsevier, 2004. |
[46] |
W.X. Wu, L. Jin, Z.Y. Zhang, W.J. Ding, J. Dong, J. Alloy. Compd. 585 (2014) 111-119.
DOI URL |
[47] |
M.G. Jiang, C. Xu, H. Yan, S.H. Lu, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, Sci. Rep. 8 (2018) 16800.
DOI PMID |
[48] |
L.Y. Zhao, H. Yan, R.S. Chen, E.H. Han, J. Magn. Alloy. 9 (2021) 818-828.
DOI URL |
[49] | L.Y. Zhao, H. Yan, R.S. Chen, E.H. Han, J. Mater. Sci.Technol. 60 (2021) 162-167. |
[50] |
Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, J.F. Nie, Acta Mater. 105 (2016) 479-494.
DOI URL |
[51] |
A. Ostapovets, A. Jäger, P. Šedá, P. Lej ˇcek, Scr. Mater. 64 (2011) 470-473.
DOI URL |
[52] |
C.D. Barrett, A. Imandoust, A.L. Oppedal, K. Inal, M.A. Tschopp, H. El Kadiri, Acta Mater. 128 (2017) 270-283.
DOI URL |
[53] |
J.A. del Valle, F. Carreño, O.A. Ruano, Acta Mater. 54 (2006) 4247-4259.
DOI URL |
[54] |
D. Wu, R.S. Chen, E.H. Han, J. Alloy. Compd. 509 (2011) 2856-2863.
DOI URL |
[55] |
J. Koike, R. Ohyama, Acta Mater. 53 (2005) 1963-1972.
DOI URL |
[56] |
S.-G. Hong, S.H. Park, C.S. Lee, Acta Mater. 58 (2010) 5873-5885.
DOI URL |
[57] |
M.G. Jiang, C. Xu, T. Nakata, H. Yan, R.S. Chen, S. Kamado, J. Alloy. Compd. 668 (2016) 13-21.
DOI URL |
[58] |
M.G. Jiang, C. Xu, T. Nakata, H. Yan, R.S. Chen, S. Kamado, Mater. Sci. Eng. A 678 (2016) 329-338.
DOI URL |
[59] |
P. Dobro ˇn, J. Balík, F. Chmelík, K. Illková, J. Bohlen, D. Letzig, P. Lukáˇc, J. Alloy. Compd. 588 (2014) 628-632.
DOI URL |
[60] |
J.D. Robson, N. Stanford, M.R. Barnett, Scr. Mater. 63 (2010) 823-826.
DOI URL |
[61] |
M. Liao, B. Li, M.F. Horstemeyer, Comput. Mater. Sci. 79 (2013) 534-539.
DOI URL |
[62] |
D.H. Kang, D.W. Kim, S. Kim, G.T. Bae, K.H. Kim, N.J. Kim, Scr. Mater. 61 (2009) 768-771.
DOI URL |
[63] |
J.W. Park, K.S. Shin, Mater. Sci. Eng. A 688 (2017) 56-61.
DOI URL |
[1] | Jianwen Le, Yuanfei Han, Peikun Qiu, Shaopeng Li, Guangfa Huang, Jianwei Mao, Weijie Lu. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 1-13. |
[2] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[3] | H.T. Jeong, W.J. Kim. Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling [J]. J. Mater. Sci. Technol., 2022, 111(0): 152-166. |
[4] | Lei Lei, Qinyang Zhao, Cong Wu, Yongqing Zhao, Shixing Huang, Weiju Jia, Weidong Zeng. Variant selection, coarsening behavior of α phase and associated tensile properties in an α+β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 101-113. |
[5] | Xu Jing, Guan Bo, Xin Yunchang, Wei Xuedong, Huang Guangjie, Liu Chenglu. A weak texture dependence of Hall-Petch relation in a rare-earth containing magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 251-259. |
[6] | Duoduo Wang, Qunbo Fan, Xingwang Cheng, Yu Zhou, Ran Shi, Yan Qian, Le Wang, Xinjie Zhu, Haichao Gong, Kai Chen, Jingjiu Yuan, Liu Yang. Texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr dual-phase alloy during cold rolling based on multiscale crystal plasticity finite element model [J]. J. Mater. Sci. Technol., 2022, 111(0): 76-87. |
[7] | Mengcheng Zhou, Xinfang Zhang. Regulating the recrystallized grain to induce strong cube texture in oriented silicon steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 126-139. |
[8] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
[9] | Bo Hu, Zixin Li, Dejiang Li, Tao Ying, Xiaoqin Zeng, Wenjiang Ding. A hot tearing criterion based on solidification microstructure in cast alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 68-80. |
[10] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[11] | Mingxiang Liu, Changjiang Song, Zhenshan Cui. Crystallographic texture evolution and martensite transformation in the strain hardening process of a ferrite-based low density steel [J]. J. Mater. Sci. Technol., 2021, 78(0): 247-259. |
[12] | Xiaozhao Ma, Zhilei Xiang, Chao Tan, Zhitian Wang, Yingying Liu, Ziyong Chen, Qun Shu. Influences of boron contents on microstructures and mechanical properties of as-casted near α titanium alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 1-18. |
[13] | Yuyang Tang, Yuqing Li, Xiaochang Xu, Ming Yue, Weiqiang Liu, Hongguo Zhang, Qingmei Lu, Weixing Xia. Analysis on deformation and texture formation mechanism of hot-deformed Nd-Fe-B magnets based on heterogeneous structure evolution [J]. J. Mater. Sci. Technol., 2021, 80(0): 28-35. |
[14] | Bo Song, Zhiwen Du, Ning Guo, Qingshan Yang, Fang Wang, Shengfeng Guo, Renlong Xin. Effect of free-end torsion on microstructure and mechanical properties of AZ31 bars with square section [J]. J. Mater. Sci. Technol., 2021, 69(0): 20-31. |
[15] | Abdul Malik, Yangwei Wang, Huanwu Cheng, Faisal Nazeer, Muhammad Abubaker Khan. Microstructure evolution of Mg-Zn-Zr magnesium alloy against soft steel core projectile [J]. J. Mater. Sci. Technol., 2021, 79(0): 46-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||