J. Mater. Sci. Technol. ›› 2022, Vol. 103: 105-112.DOI: 10.1016/j.jmst.2021.07.010
• Research Article • Previous Articles Next Articles
Qian Wanga,b, Shun Xuc, Yajun Zhaod,*(), Jean-Sébastien Lecomtea,b,*(
), Christophe Schumana,b,*(
)
Received:
2021-05-05
Revised:
2021-07-03
Accepted:
2021-07-05
Published:
2022-03-20
Online:
2021-08-27
Contact:
Yajun Zhao,Jean-Sébastien Lecomte,Christophe Schuman
About author:
christophe.schuman@univ-lorraine.fr (C. Schuman).Qian Wang, Shun Xu, Yajun Zhao, Jean-Sébastien Lecomte, Christophe Schuman. Multi-dimensional morphology of hydride diffusion layer and associated sequential twinning in commercial pure titanium[J]. J. Mater. Sci. Technol., 2022, 103: 105-112.
Orientation relationship | Interface plane | |
---|---|---|
OR1 | {0001}//{001},<$1\bar{2}10$>//<110> | {$10\bar{1}0$}//{$1\bar{1}0$} |
OR2 | {0001}//{$1\bar{1}1$} (angle of 4°), <$1\bar{2}10$>//<110> | {$10\bar{1}3$}//{$1\bar{1}0$} |
OR3 | {$10\bar{1}0$}//{$1\bar{1}1$},<$1\bar{2}10$>//<110> | {0001}//{$1\bar{1}2$} |
OR4 | {$\bar{1}011$}//{001},<$1\bar{2}10$>//<110> | {$10\bar{1}1$}//{$1\bar{1}\bar{1}$} |
Table 1 Four orientation relationships of α-Ti/δ-hydride (FCC structured) transition.
Orientation relationship | Interface plane | |
---|---|---|
OR1 | {0001}//{001},<$1\bar{2}10$>//<110> | {$10\bar{1}0$}//{$1\bar{1}0$} |
OR2 | {0001}//{$1\bar{1}1$} (angle of 4°), <$1\bar{2}10$>//<110> | {$10\bar{1}3$}//{$1\bar{1}0$} |
OR3 | {$10\bar{1}0$}//{$1\bar{1}1$},<$1\bar{2}10$>//<110> | {0001}//{$1\bar{1}2$} |
OR4 | {$\bar{1}011$}//{001},<$1\bar{2}10$>//<110> | {$10\bar{1}1$}//{$1\bar{1}\bar{1}$} |
Fig. 1. (a) SEI showing section microstructure of hydride layer. (b) The higher-magnification SEM of the area in the black box. (c) TD-IPF maps of hydride layer formed on TD surface. (d) RD-IPF maps of hydride layer formed on RD surface. Grain boundaries are indicated by black lines in the IPF maps.
Fig. 2. IPF maps of hydride layer and corresponding pole figures of hydride variants in (a) Grain 1, Euler angle: 101.1°, 73.3°, 22.9°, (b) Grain 2, Euler angle: 86.7°, 57.1°, 5.2°, (c) Grain 3, Euler angle: 37.9°, 82.5°, 13.3° and (d) Grain 4, Euler angle: 166.2°, 87.1°, 26.3°. The IPF maps are colored with hydrogen diffusion direction. Grain boundaries are indicated by black line.
Fig. 3. (a) ND-IPF map of Ti matrix and hydride precipitates with corresponding color code. (b) Phase map with Ti matrix in silver and white hydride. The hydride and twin boundaries are highlighted by color lines: {$10\bar{1}2$} extension twins (green), {$11\bar{2}2$} contraction twins (orange), interface planes of OR1 hydrides (blue) and OR2 hydrides (pink). Black lines refer to grain boundaries.
Variant 1 | Variant 2 | Variant 3 | Variant 4 | Variant 5 | Variant 6 | |
---|---|---|---|---|---|---|
OR1 hydride (Pi) | ($10\bar{1}0$) | ($01\bar{1}0$) | ($\bar{1}100$) | |||
OR2 hydride (Bi) | ($10\bar{1}3$)[$10\bar{1}0$] | ($01\bar{1}3$)[$01\bar{1}0$] | ($\bar{1}103$)[$\bar{1}100$] | ($\bar{1}013$)[$\bar{1}010$] | ($0\bar{1}13$)[$0\bar{1}10$] | ($1\bar{1}03$)[$1\bar{1}00$] |
{$10\bar{1}2$} twin (TiI) | ($10\bar{1}2$)[$\bar{1}011$] | ($01\bar{1}2$)[$0\bar{1}11$] | ($\bar{1}102$)[$1\bar{1}01$] | ($\bar{1}012$)[$10\bar{1}1$] | ($0\bar{1}12$)[$01\bar{1}1$] | ($1\bar{1}02$)[$\bar{1}101$] |
{$11\bar{2}2$} twin (CiI) | ($11\bar{2}2$)[$11\bar{2}\bar{3}$] | ($\bar{1}2\bar{1}2$)[$\bar{1}2\bar{1}\bar{3}$] | ($\bar{2}112$)[$\bar{2}11\bar{3}$] | ($\bar{1}\bar{1}22$)[$\bar{1}\bar{1}2\bar{3}$] | ($1\bar{2}12$)[$1\bar{2}1\bar{3}$] | ($2\bar{1}\bar{1}2$)[$2\bar{1}\bar{1}\bar{3}$] |
Table 2 Variants of hydride and twin.
Variant 1 | Variant 2 | Variant 3 | Variant 4 | Variant 5 | Variant 6 | |
---|---|---|---|---|---|---|
OR1 hydride (Pi) | ($10\bar{1}0$) | ($01\bar{1}0$) | ($\bar{1}100$) | |||
OR2 hydride (Bi) | ($10\bar{1}3$)[$10\bar{1}0$] | ($01\bar{1}3$)[$01\bar{1}0$] | ($\bar{1}103$)[$\bar{1}100$] | ($\bar{1}013$)[$\bar{1}010$] | ($0\bar{1}13$)[$0\bar{1}10$] | ($1\bar{1}03$)[$1\bar{1}00$] |
{$10\bar{1}2$} twin (TiI) | ($10\bar{1}2$)[$\bar{1}011$] | ($01\bar{1}2$)[$0\bar{1}11$] | ($\bar{1}102$)[$1\bar{1}01$] | ($\bar{1}012$)[$10\bar{1}1$] | ($0\bar{1}12$)[$01\bar{1}1$] | ($1\bar{1}02$)[$\bar{1}101$] |
{$11\bar{2}2$} twin (CiI) | ($11\bar{2}2$)[$11\bar{2}\bar{3}$] | ($\bar{1}2\bar{1}2$)[$\bar{1}2\bar{1}\bar{3}$] | ($\bar{2}112$)[$\bar{2}11\bar{3}$] | ($\bar{1}\bar{1}22$)[$\bar{1}\bar{1}2\bar{3}$] | ($1\bar{2}12$)[$1\bar{2}1\bar{3}$] | ($2\bar{1}\bar{1}2$)[$2\bar{1}\bar{1}\bar{3}$] |
Fig. 4. (a) IPF map of Grain I (Euler angles: 116.0°, 98.2°, 21.1°) containing OR1 hydrides. The color code for the IPF maps is the same as Fig. 4. (b) {$10\bar{1}0$} pole figure, the black dots represent the planes of Ti matrix and the color ones represent the hydride planes. The dotted lines represent the traces of corresponding interface planes of hydrides. (c) IGMA distributions obtained from the misorientation angles of Grain I.
Fig. 5. (a) and (e) ND-IPF map of Grain II (Euler angles: 33.2°, 155.5°, 29.2°) containing {$10\bar{1}2$} twin-hydride pairs and Grain III (Euler angles: 100.2°, 62.6°, 25.1°) containing {$11\bar{2}2$} twin-hydride pairs. (b) and (f) Phase maps of Grain II and Grain III. (c) and (g) Pole figures of {$10\bar{1}3$}, {$10\bar{1}2$} and {$11\bar{2}2$} planes. The black dots represent the planes of Ti matrix and the color ones are the planes of hydrides or twins. The dotted lines represent the traces of corresponding interface planes of hydrides. (d) and (h) IPF contouring maps of all the grains with respective {$10\bar{1}2$} and {$11\bar{2}2$} twin-hydride pairs. The OR1 and OR2 favorable orientations are indicated by red points.
Fig. 6. Illustration of HCP-FCC structure transformations of (a) OR1 and (b) OR2 hydrides. The filled and open circles are in the different atom layers.
Twinning (DT) | ||
---|---|---|
OR2 hydride (DH) | TI{$10\bar{1}2$}<$\bar{1}011$> | CI{$11\bar{2}2$}<$11\bar{2}\bar{3}$> |
$\left[\begin{array}{ccc}0.055 & 0 & 0.384 \\ 0 & 0.055 & 0 \\ 0 & 0 & 0.086\end{array}\right]$ | $\left[\begin{array}{ccc}0 & 0 & 0.173 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ | $\left[\begin{array}{ccc}0 & 0 & 0.218 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ |
Table 3 Displacement gradient tensor of OR2 hydriding and twinning in α-titanium (c/a=1.587).
Twinning (DT) | ||
---|---|---|
OR2 hydride (DH) | TI{$10\bar{1}2$}<$\bar{1}011$> | CI{$11\bar{2}2$}<$11\bar{2}\bar{3}$> |
$\left[\begin{array}{ccc}0.055 & 0 & 0.384 \\ 0 & 0.055 & 0 \\ 0 & 0 & 0.086\end{array}\right]$ | $\left[\begin{array}{ccc}0 & 0 & 0.173 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ | $\left[\begin{array}{ccc}0 & 0 & 0.218 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ |
Variant 1 | Variant 2 | Variant 3 | Variant 4 | Variant 5 | Variant 6 | |
---|---|---|---|---|---|---|
B5 (Grain I) | $\mathbf{T}_{\mathbf{1}}^{\mathbf{I}}$+0.071 | $\mathbf{T}_{\mathbf{2}}^{\mathbf{I}}$+0.063 | $\mathbf{T}_{\mathbf{3}}^{\mathbf{I}}$+0.071 | $\mathbf{T}_{\mathbf{4}}^{\mathbf{I}}$+0.066 | $\mathbf{T}_{\mathbf{5}}^{\mathbf{I}}$+0.052 | $\mathbf{T}_{\mathbf{6}}^{\mathbf{I}}$+0.065 |
$~\text{C}_{1}^{\text{I}}$-0.038 | $\text{C}_{2}^{\text{I}}$-0.038 | $\text{C}_{3}^{\text{I}}$-0.081 | $\text{C}_{4}^{\text{I}}$-0.100 | $\text{C}_{5}^{\text{I}}$-0.100 | $\text{C}_{6}^{\text{I}}$-0.082 | |
B2(Grain II) | $\mathbf{T}_{\mathbf{1}}^{\mathbf{I}}$ +0.004 | $\mathbf{T}_{\mathbf{2}}^{\mathbf{I}}$-0.056 | $\mathbf{T}_{\mathbf{3}}^{\mathbf{I}}$-0.008 | $\mathbf{T}_{\mathbf{4}}^{\mathbf{I}}$-0.009 | $\mathbf{T}_{\mathbf{5}}^{\mathbf{I}}$-0.044 | $\mathbf{T}_{\mathbf{6}}^{\mathbf{I}}$-0.001 |
$~\text{C}_{1}^{\text{I}}$0.000 | $\text{C}_{2}^{\text{I}}$+0.008 | $\text{C}_{3}^{\text{I}}$-0.024 | $\text{C}_{4}^{\text{I}}$+0.063 | $\text{C}_{5}^{\text{I}}$+0.078 | $\text{C}_{6}^{\text{I}}$-0.017 |
Table 4 The values $\text{D}_{33}^{\text{S}}$ obtained by transforming displacement gradient tensors from {$10\bar{1}2$} and {$11\bar{2}2$} twinning frames into sample frame. The bold variants are more favorable.
Variant 1 | Variant 2 | Variant 3 | Variant 4 | Variant 5 | Variant 6 | |
---|---|---|---|---|---|---|
B5 (Grain I) | $\mathbf{T}_{\mathbf{1}}^{\mathbf{I}}$+0.071 | $\mathbf{T}_{\mathbf{2}}^{\mathbf{I}}$+0.063 | $\mathbf{T}_{\mathbf{3}}^{\mathbf{I}}$+0.071 | $\mathbf{T}_{\mathbf{4}}^{\mathbf{I}}$+0.066 | $\mathbf{T}_{\mathbf{5}}^{\mathbf{I}}$+0.052 | $\mathbf{T}_{\mathbf{6}}^{\mathbf{I}}$+0.065 |
$~\text{C}_{1}^{\text{I}}$-0.038 | $\text{C}_{2}^{\text{I}}$-0.038 | $\text{C}_{3}^{\text{I}}$-0.081 | $\text{C}_{4}^{\text{I}}$-0.100 | $\text{C}_{5}^{\text{I}}$-0.100 | $\text{C}_{6}^{\text{I}}$-0.082 | |
B2(Grain II) | $\mathbf{T}_{\mathbf{1}}^{\mathbf{I}}$ +0.004 | $\mathbf{T}_{\mathbf{2}}^{\mathbf{I}}$-0.056 | $\mathbf{T}_{\mathbf{3}}^{\mathbf{I}}$-0.008 | $\mathbf{T}_{\mathbf{4}}^{\mathbf{I}}$-0.009 | $\mathbf{T}_{\mathbf{5}}^{\mathbf{I}}$-0.044 | $\mathbf{T}_{\mathbf{6}}^{\mathbf{I}}$-0.001 |
$~\text{C}_{1}^{\text{I}}$0.000 | $\text{C}_{2}^{\text{I}}$+0.008 | $\text{C}_{3}^{\text{I}}$-0.024 | $\text{C}_{4}^{\text{I}}$+0.063 | $\text{C}_{5}^{\text{I}}$+0.078 | $\text{C}_{6}^{\text{I}}$-0.017 |
Variant 1 | Variant 2 | Variant 3 | Variant 4 | Variant 5 | Variant 6 | |
---|---|---|---|---|---|---|
B5 (Grain I) | $\mathbf{T}_{\mathbf{1}}^{\mathbf{I}}$ +0.120 | $\mathbf{T}_{\mathbf{2}}^{\mathbf{I}}$+0.224 | $\mathbf{T}_{\mathbf{3}}^{\mathbf{I}}$T3I +0.120 | $\mathbf{T}_{\mathbf{4}}^{\mathbf{I}}$+0.089 | $\mathbf{T}_{\mathbf{5}}^{\mathbf{I}}$-0.193 | $\text{T}_{6}^{\text{I}}$-0.089 |
$\text{C}_{1}^{\text{I}}$-0.108 | $\text{C}_{2}^{\text{I}}$-0.108 | $\text{C}_{3}^{\text{I}}$-0.014 | $\mathbf{C}_{\mathbf{4}}^{\mathbf{I}}$+0.080 | $\text{C}_{5}^{\text{I}}$+0.080 | $\text{C}_{6}^{\text{I}}$-0.014 | |
B2 (Grain II) | $\text{C}_{1}^{\text{I}}$+0.080 | $\text{C}_{2}^{\text{I}}$+0.080 | $\text{C}_{3}^{\text{I}}$-0.014 | $\mathbf{C}_{\mathbf{4}}^{\mathbf{I}}$-0.108 | $\text{C}_{5}^{\text{I}}$-0.108 | $\text{C}_{6}^{\text{I}}$-0.014 |
$\mathbf{T}_{\mathbf{1}}^{\mathbf{I}}$-0.089 | $\mathbf{T}_{\mathbf{2}}^{\mathbf{I}}$-0.193 | $\mathbf{T}_{\mathbf{3}}^{\mathbf{I}}$-0.089 | $\mathbf{T}_{\mathbf{4}}^{\mathbf{I}}$+0.120 | $\mathbf{T}_{\mathbf{5}}^{\mathbf{I}}$+0.224 | $\text{T}_{6}^{\text{I}}$+0.120 |
Table 5 The values $\text{D}_{13}^{\text{H}-\text{T}}$ obtained by transforming displacement gradient tensors from hydriding frame into the twinning frames. The bold variants are more favorable.
Variant 1 | Variant 2 | Variant 3 | Variant 4 | Variant 5 | Variant 6 | |
---|---|---|---|---|---|---|
B5 (Grain I) | $\mathbf{T}_{\mathbf{1}}^{\mathbf{I}}$ +0.120 | $\mathbf{T}_{\mathbf{2}}^{\mathbf{I}}$+0.224 | $\mathbf{T}_{\mathbf{3}}^{\mathbf{I}}$T3I +0.120 | $\mathbf{T}_{\mathbf{4}}^{\mathbf{I}}$+0.089 | $\mathbf{T}_{\mathbf{5}}^{\mathbf{I}}$-0.193 | $\text{T}_{6}^{\text{I}}$-0.089 |
$\text{C}_{1}^{\text{I}}$-0.108 | $\text{C}_{2}^{\text{I}}$-0.108 | $\text{C}_{3}^{\text{I}}$-0.014 | $\mathbf{C}_{\mathbf{4}}^{\mathbf{I}}$+0.080 | $\text{C}_{5}^{\text{I}}$+0.080 | $\text{C}_{6}^{\text{I}}$-0.014 | |
B2 (Grain II) | $\text{C}_{1}^{\text{I}}$+0.080 | $\text{C}_{2}^{\text{I}}$+0.080 | $\text{C}_{3}^{\text{I}}$-0.014 | $\mathbf{C}_{\mathbf{4}}^{\mathbf{I}}$-0.108 | $\text{C}_{5}^{\text{I}}$-0.108 | $\text{C}_{6}^{\text{I}}$-0.014 |
$\mathbf{T}_{\mathbf{1}}^{\mathbf{I}}$-0.089 | $\mathbf{T}_{\mathbf{2}}^{\mathbf{I}}$-0.193 | $\mathbf{T}_{\mathbf{3}}^{\mathbf{I}}$-0.089 | $\mathbf{T}_{\mathbf{4}}^{\mathbf{I}}$+0.120 | $\mathbf{T}_{\mathbf{5}}^{\mathbf{I}}$+0.224 | $\text{T}_{6}^{\text{I}}$+0.120 |
[1] |
D. Banerjee, J.C. Williams, Acta Mater 61 (2013) 844-879.
DOI URL |
[2] |
I. Guillot, X. Feaugas, M. Clavel, Scr. Mater. 44 (2001) 1011-1017.
DOI URL |
[3] | in: S. Banerjee, P. Mukhopadhyay (Eds.), Transformations Examples from Ti-tanium and Zirconium Alloys, eds., Pergamon, 2007, pp. 717-781. |
[4] |
A. San-Martin, F.D. Manchester, Bull. Alloy Phase Diagrams 8 (1987) 30-42.
DOI URL |
[5] |
E. Conforto, D. Caillard, Acta Mater 55 (2007) 785-798.
DOI URL |
[6] |
A. Bourret, A. Lasalmonie, S. Naka, Scr. Metall. 20 (1986) 861-866.
DOI URL |
[7] |
H. Numakura, M. Koiwa, Acta Metall 32 (1984) 1799-1807.
DOI URL |
[8] |
E. Conforto, D. Caillard, Solid State Phenom 172-174 (2011) 242-247.
DOI URL |
[9] |
O.T. Woo, G.C. Weatherly, C.E. Coleman, R.W. Gilbert, Acta Metall 33 (1985) 1897-1906.
DOI URL |
[10] |
Q. Wang, S. Xu, J.S. Lecomte, C. Schuman, L. Peltier, X. Shen, W. Song, Acta Mater 183 (2020) 329-339.
DOI URL |
[11] |
S. Wang, F. Giuliani, T. Ben Britton, Acta Mater 169 (2019) 76-87.
DOI URL |
[12] | G.J.C Carpenter, Acta Metall 29 (1978) 1225-1253. |
[13] |
Q. Wang, J.-S. Lecomte, C. Schuman, A. Mandrelli, Mater. Sci. Eng. A 812 (2021) 141099.
DOI URL |
[14] |
S. Xu, M. Gong, Y. Jiang, C. Schuman, J.S. Lecomte, J. Wang, Acta Mater 152 (2018) 58-76.
DOI URL |
[15] |
S. Xu, P. Zhou, G. Liu, D. Xiao, M. Gong, J. Wang, Acta Mater 165 (2019) 547-560.
DOI URL |
[16] |
Y.B. Chun, M. Battaini, C.H.J. Davies, S.K. Hwang, Metall. Mater. Trans. A 41 (2010) 3473-3487.
DOI URL |
[17] |
G.C. Weatherly, Acta Metall 29 (1981) 501-512.
DOI URL |
[18] |
S. Xu, M. Gong, C. Schuman, J.-S. Lecomte, X. Xie, J. Wang, Acta Mater 132 (2017) 57-68.
DOI URL |
[19] |
É. Martin, L. Capolungo, L. Jiang, J.J. Jonas, Acta Mater 58 (2010) 3970-3983.
DOI URL |
[20] |
J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39 (1995) 1-157.
DOI URL |
[21] | H.J. Bunge, C. Esling, J. Muller, Acta Crystallogr. Sect. A Cryst. Physics, Diffrac-tion, Theor. Gen. Crystallogr. 37 (1981) 889-899. |
[1] | Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2022, 98(0): 72-86. |
[2] | Lei Lei, Qinyang Zhao, Cong Wu, Yongqing Zhao, Shixing Huang, Weiju Jia, Weidong Zeng. Variant selection, coarsening behavior of α phase and associated tensile properties in an α+β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 101-113. |
[3] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Jian Sun, Levente Vitos. Theoretical and experimental study of phase transformation and twinning behavior in metastable high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 99(0): 161-168. |
[4] | Sen Yu, Zhe Yu, Dagang Guo, Hui Zhu, Minghua Zhang, Jianye Han, Zhentao Yu, Yemin Cao, Gui Wang. Enhanced bioactivity and interfacial bonding strength of Ti3Zr2Sn3Mo25Nb alloy through graded porosity and surface bioactivation [J]. J. Mater. Sci. Technol., 2022, 100(0): 137-149. |
[5] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
[6] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[7] | Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao, Ruiqiang Hang. Corrosion behavior, antibacterial ability, and osteogenic activity of Zn-incorporated Ni-Ti-O nanopore layers on NiTi alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 69-78. |
[8] | Min Cheng, Zhengguan Lu, Jie Wu, Ruipeng Guo, Junwei Qiao, Lei Xu, Rui Yang. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98(0): 177-185. |
[9] | Yunwei Liu, Zelin Chen, Chang Liu, Jinfeng Zhang, Wenbin Hu, Yida Deng. Exploiting H-induced lattice expansion in β-palladium hydride for enhanced catalytic activities toward oxygen reduction reaction [J]. J. Mater. Sci. Technol., 2022, 98(0): 205-211. |
[10] | Wei Li, Hanyang Liu, Peihua Yin, Wei Yan, Wei Wang, Yiyin Shan, Ke Yang. Special tetrahedral twins in a cryogenically deformed CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 129-136. |
[11] | Luxin Liang, Qianli Huang, Hong Wu, Hao He, Guanghua Lei, Dapeng Zhao, Kun Zhou. Engineering nano-structures with controllable dimensional features on micro-topographical titanium surfaces to modulate the activation degree of M1 macrophages and their osteogenic potential [J]. J. Mater. Sci. Technol., 2022, 96(0): 167-178. |
[12] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
[13] | MengCheng Deng, Shang Sui, Bo Yao, Liang Ma, Xin Lin, Jing Chen. Microstructure and room-temperature tensile property of Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C with near equiaxed β grain fabricated by laser directed energy deposition technique [J]. J. Mater. Sci. Technol., 2022, 101(0): 308-320. |
[14] | Wenjun Lu, Jianjun Li. Synergetic deformation mechanism in hierarchical twinned high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 102(0): 80-88. |
[15] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||