J. Mater. Sci. Technol. ›› 2022, Vol. 98: 205-211.DOI: 10.1016/j.jmst.2021.04.052
• Research Article • Previous Articles Next Articles
Yunwei Liua, Zelin Chenb,*(), Chang Liua, Jinfeng Zhanga, Wenbin Hua,*(
), Yida Denga,*(
)
Received:
2021-01-29
Revised:
2021-01-29
Accepted:
2021-01-29
Published:
2022-01-30
Online:
2022-01-25
Contact:
Zelin Chen,Wenbin Hu,Yida Deng
About author:
wbhu@tju.edu.cn (W. Hu),Yunwei Liu, Zelin Chen, Chang Liu, Jinfeng Zhang, Wenbin Hu, Yida Deng. Exploiting H-induced lattice expansion in β-palladium hydride for enhanced catalytic activities toward oxygen reduction reaction[J]. J. Mater. Sci. Technol., 2022, 98: 205-211.
Fig. 1. (a, b) TEM characterization and the corresponding (a1, b1) high-resolution TEM (HRTEM) images, (a2, b2) fast Fourier transform images of as-synthesized Pd NCs, PdH0.43@CuO, (c-c3) EDS mapping of PdH0.43@CuO. (d) XRD patterns of Pd, Pd@CuO and PdH0.43@CuO composites and corresponding models for (e) Pd and (f) PdH0.43.
Fig. 2. Structural characterizations of the interface between palladium and copper oxide of PdH0.43@CuO: (a) HRTEM image, (b) atomic-resolution ABF-STEM image, (c) Pd 3d XPS spectrum of Pd NCs, Pd@CuO and PdH0.43@CuO.
Fig. 3. (a) Cyclic voltammograms of initial Pd NCs, Pd@CuO and PdH0.43@CuO recorded at room temperature in a N2-saturated 0.1 M KOH solution with a scan rate of 50 mV s - 1. (b) ORR polarization curves of Pd NCs, Pd@CuO, PdH0.43@CuO and Pt/C recorded in an O2-saturated 0.1 M KOH solution at room temperature with a sweep rate of 5 mV s - 1 at 1600 rpm. (c) Polarization curves for the ORR on the PdH0.43@CuO before and after 10,000 potential cycles in an O2-saturated 0.1 M KOH solution at room temperature with a potential sweep rate of 5 mV s - 1 and a rotation rate of 1600 rpm. (d) Bargraph of mass activities at 0.90 V and 0.85 V for the ORR.
Sample | ECSA (m2 g-1) | E1/2 (V) | Mass activity (A mg-1) |
---|---|---|---|
Pd nanocubes | 45.27 | 0.845 | 0.047 |
Pd@CuO | 45.80 | 0.865 | 0.049 |
PdH0.43@CuO | 77.23 | 0.889 | 0.18 |
Pt/C (20 wt.%) | 59.56 | 0.860 | 0.035 |
Table 1 . Summary of results of the as-prepared Pd nanocube, Pd@CuO, PdH0.43@CuO catalysts. All activities were obtained at 0.90 V versus RHE in an O2-saturated 0.1 M KOH solution, 1600 rpm, 5 mV s-1.
Sample | ECSA (m2 g-1) | E1/2 (V) | Mass activity (A mg-1) |
---|---|---|---|
Pd nanocubes | 45.27 | 0.845 | 0.047 |
Pd@CuO | 45.80 | 0.865 | 0.049 |
PdH0.43@CuO | 77.23 | 0.889 | 0.18 |
Pt/C (20 wt.%) | 59.56 | 0.860 | 0.035 |
Fig. 4. DFT calculation results. (a, b) The constructed models of Pd and PdH0.43. (c) Atomic configurations of oxygen intermediates (OOH*, O*, and OH*) adsorbed on PdH0.43. (d) Free-energy paths of intermediates in ORR on Pd and PdH0.43.
[1] |
Q.Y. Jia, K. Caldwell, K. Strickland, J.M. Ziegelbauer, Z.Y. Liu, Z.Q. Yu, D.E. Ra-maker, S. Mukerjee, ACS Catal 5 (2015) 176-186.
DOI URL |
[2] |
S. Zhang, X. Zhang, G. Jiang, H. Zhu, S. Guo, D. Su, G. Lu, S. Sun. J. Am. Chem. Soc. 136 (2014) 7734-7739.
DOI PMID |
[3] |
E. Panizon, R. Ferrando, Nanoscale 8 (2016) 15911-15919.
DOI URL |
[4] |
L.Z. Bu, N. Zhang, S.J. Guo, X. Zhang, J. Li, J.L. Yao, T. Wu, G. Lu, J.Y. Ma, D. Su, X.Q. Huang, Science 354 (2016) 1410-1414.
DOI URL |
[5] |
S. Yang, Y. Chen, C. Jiang, InfoMat 3 (2021) 397-420.
DOI URL |
[6] | N.T. Li, S.C. Tang, X.K. Meng. J. Mater. Sci. Technol. 30 (2014) 1071-1077. |
[7] |
Z. Chen, J. Zhang, Y. Zhang, Y. Liu, X. Han, C. Zhong, W. Hu, Y. Deng, Nano Energy 42 (2017) 353-362.
DOI URL |
[8] |
L.L. He, P. Song, A.J. Wang, J.N. Zheng, L.P. Mei, J.J. Feng, J. Mater. Chem. A 3 (2015) 5352-5359.
DOI URL |
[9] |
R. Sriphathoorat, K. Wang, S.P. Luo, M. Tang, H.Y. Du, X.W. Du, P.K. Shen, J. Mater. Chem. A 4 (2016) 18015-18021.
DOI URL |
[10] |
N. Zhang, Y. Zhu, Q. Shao, X. Zhu, X. Huang, J. Mater. Chem. A 5 (2017) 18977-18983.
DOI URL |
[11] |
H.J. Huang, L.L. Ma, C.S. Tiwary, Q.G. Jiang, K.B. Yin, W. Zhou, P.M. Ajayan, Small 13 (2017) 1603013.
DOI URL |
[12] |
M.M. Tusi, M. Brandalise, N.S.D. Polanco, O.V. Correa, A.C.da Silva, J.C. Villalba, F.J. Anaissi, A.O. Neto, E.V. Spinace, J. Mater. Sci. Technol. 29 (2013) 747-751.
DOI URL |
[13] |
N. Li, S. Tang, X. Meng. J. Mater. Sci. Technol. 31 (2015) 30-36.
DOI URL |
[14] |
Y. Zhang, J.F. Zhang, Z.L. Chen, Y.W. Liu, M.M. Zhang, X.P. Han, C. Zhong, W.B. Hu, Y.D. Deng, Sci. China-Mater. 61 (2018) 697-706.
DOI URL |
[15] |
C. Liu, Z.L. Chen, D.W. Rao, J.F. Zhang, Y.W. Liu, Y.N. Chen, Y.D. Deng, W.B. Hu, Sci. China-Mater. 64 (2021) 611-620.
DOI URL |
[16] |
N.T. Li, S.C. Tang, X.K. Meng. J. Mater. Sci. Technol. 31 (2015) 30-36.
DOI URL |
[17] |
M.C. Luo, Y.J. Sun, X. Zhang, Y.N. Qin, M.Q. Li, Y.J. Li, C.J. Li, Y. Yang, L. Wang, P. Gao, G. Lu, S.J. Guo, Adv. Mater. 30 (2018) 1705515.
DOI URL |
[18] |
X.L. Sun, D.G. Li, S.J. Guo, W.L. Zhu, S.H. Sun, Nanoscale 8 (2016) 2626-2631.
DOI URL |
[19] |
L.Z. Bu, S.J. Guo, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J.L. Yao, J. Guo, X.Q. Huang, Nat. Commun. 7 (2016) 11850.
DOI URL |
[20] |
Y. Sun, Y. Liang, M. Luo, F. Lv, Y. Qin, L. Wang, C. Xu, E. Fu, S. Guo, Small 14 (2018) 1702259.
DOI URL |
[21] | W. Jiang, X.D. Wang, Y. Chen, G.J. Wu, K. Ba, N.N. Xuan, Y.Y. Sun, P. Gong, J.X. Bao, H. Shen, T. Lin, X.J. Meng, J.L. Wang, Z.Z. Sun, InfoMat 1 (2019) 260-267. |
[22] | Z.D. Zhang, M. Zhou, Y.J. Chen, S.J. Liu, H.F. Wang, J. Zhang, S.F. Ji, D.S. Wang, Y.D. Li, Sci. China-Mater. (2021), doi: 10.1007/s40843-020-1579-7. |
[23] |
E. Antolini, Energy Environ. Sci. 2 (2009) 915-931.
DOI URL |
[24] |
A. Rose, S. Maniguet, R.J. Mathew, C. Slater, J. Yao, A.E. Russell, Phys. Chem. Chem. Phys. 5 (2003) 3220-3225.
DOI URL |
[25] |
Z. Zhao, X. Huang, M. Li, G. Wang, C. Lee, E. Zhu, X. Duan, Y. Huang. J. Am. Chem. Soc. 137 (2015) 15672-15675.
DOI URL |
[26] |
Y. Lu, J. Wang, Y. Peng, A. Fisher, X. Wang, Adv. Energy Mater. 7 (2017) 1700919.
DOI URL |
[27] |
J.W. Zhang, M.S. Chen, H.Q. Li, Y.J. Li, J.Y. Ye, Z.M. Cao, M.L. Fang, Q. Kuang, J. Zheng, Z.X. Xie, Nano Energy 44 (2018) 127-134.
DOI URL |
[28] |
H. Huang, S.X. Bao, Q.L. Chen, Y.A. Yang, Z.Y. Jiang, Q. Kuang, X.Y. Wu, Z.X. Xie, L.S. Zheng, Nano Res 8 (2015) 2698-2705.
DOI URL |
[29] |
R.J. Wolf, M.W. Lee, J.R. Ray, Phys. Rev. Lett. 73 (1994) 557-560.
PMID |
[30] | J.A. Eastman, L.J. Thompson, B.J. Kestel, Phys. eview. B-Condens. Matter 48 (1993) 84-92. |
[31] |
J. Schirber, B. Morosin, Phys. Rev. B 12 (1975) 117-118.
DOI URL |
[32] |
J. Zhang, Y. Zhao, C. Chen, Y.C. Huang, C.L. Dong, C.J. Chen, R.S. Liu, C. Wang, K. Yan, Y. Li, G. Wang. J. Am. Chem. Soc. 141 (2019) 20118-20126.
DOI URL |
[33] |
C.H. Chen, D. Wu, Z. Li, R. Zhang, C.G. Kuai, X.R. Zhao, C.K. Dong, S.Z. Qiao, H. Liu, X.W. Du, Adv. Energy Mater. 9 (2019) 1803913.
DOI URL |
[34] |
X.Q. Huang, Y. Chen, E.B. Zhu, Y.X. Xu, X.F. Duan, Y. Huang, J. Mater. Chem. A 1 (2013) 14449-14454.
DOI URL |
[35] | X. Shi, Y. Wen, X. Guo, Y. Pan, Y. Ji, Y. Ying, H.F. Yang, ACS Appl. Mater. Inter-faces 9 (2017) 25995-26000. |
[36] | X.W. Nie, X. Jiang, H.Z. Wang, W.J. Luo, M.J. Janik, Y.G. Chen, X.W. Guo, C.S. Song, ACS Catal 8 (2018) 4 873-4 892. |
[37] |
Z.L. Chen, Y.W. Liu, C. Liu, J.F. Zhang, Y.N. Chen, W.B. Hu, Y.D. Deng, Small 16 (2020) 1904964.
DOI URL |
[38] |
N. Nalajala, W.F.G. Saleha, B.P. Ladewig, M. Neergat, Chem. Commun. 50 (2014) 9365-9368.
DOI URL |
[39] |
M. Wang, W. Zhang, J. Wang, D. Wexler, S.D. Poynton, R.C. Slade, H. Liu, B. Winther-Jensen, R. Kerr, D. Shi, J. Chen, ACS Appl. Mater. Interfaces 5 (2013) 12708-12715.
DOI URL |
[40] |
M. Bao, I.S. Amiinu, T. Peng, W. Li, S. Liu, Z. Wang, Z. Pu, D. He, Y. Xiong, S. Mu, ACS Energy Letters 3 (2018) 940-945.
DOI URL |
[41] |
Q. Xue, J. Bai, C.C. Han, P. Chen, J.X. Jiang, Y. Chen, ACS Catal 8 (2018) 11287-11295.
DOI URL |
[42] |
X. Han, X. Ling, D. Yu, D. Xie, L. Li, S. Peng, C. Zhong, N. Zhao, Y. Deng, W. Hu, Adv Mater 31 (2019) 1905622.
DOI URL |
[1] | Guanglu Li, Chang Liu, Zhao Zhang, Baihua Cui, Yanan Chen, Yida Deng, Wenbin Hu. Nano-manufacturing of Co(OH)2@NC for efficient oxygen evolution/reduction reactions [J]. J. Mater. Sci. Technol., 2021, 81(0): 131-138. |
[2] | Meigui Xu, Hainan Sun, Wei Wang, Yujuan Shen, Wei Zhou, Jun Wang, Zhi-Gang Chen, Zongping Shao. Scandium and phosphorus co-doped perovskite oxides as high-performance electrocatalysts for the oxygen reduction reaction in an alkaline solution [J]. J. Mater. Sci. Technol., 2020, 39(0): 22-27. |
[3] | Zhu Jie, Xiong Zewei, Zheng Jiming, Luo Zhihong, Zhu Guangbin, Xiao Chao, Meng Zhengbing, Li Yibing, KunLuo. Nitrogen-doped graphite encapsulated Fe/Fe3C nanoparticles and carbon black for enhanced performance towards oxygen reduction [J]. J. Mater. Sci. Technol., 2019, 35(11): 2543-2551. |
[4] | Hengheng Xia, Yexin Zhang, Chunlin Chen, Wenlin Wu, Ken Yao, Jian Zhang. Ozone-Mediated Functionalization of Multi-Walled Carbon Nanotubes and Their Activities for Oxygen Reduction Reaction [J]. J. Mater. Sci. Technol., 2016, 32(6): 533-538. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||