J. Mater. Sci. Technol. ›› 2022, Vol. 99: 161-168.DOI: 10.1016/j.jmst.2021.05.037
• Research article • Previous Articles Next Articles
Zhibiao Yanga,b(), Song Lub,*(
), Yanzhong Tianc,*(
), Zijian Guc, Jian Suna,*(
), Levente Vitosb,d,e
Received:
2021-04-03
Revised:
2021-05-17
Accepted:
2021-05-17
Published:
2022-02-10
Online:
2022-02-09
Contact:
Zhibiao Yang,Song Lu,Yanzhong Tian,Jian Sun
About author:
jsun@sjtu.edu.cn (J. Sun).Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Jian Sun, Levente Vitos. Theoretical and experimental study of phase transformation and twinning behavior in metastable high-entropy alloys[J]. J. Mater. Sci. Technol., 2022, 99: 161-168.
Fig. 1. Orientation dependent EEBs for SF formation, twinning, and full dislocation slip in positive-SFE (a) (Cr20Co20Ni60,, $\gamma _{isf}^{fcc}=38$mJ/m2) and negative-SFE (b) (Cr36Co36Ni28, $\gamma _{isf}^{fcc}=-38$mJ/m2) alloys.
Fig. 3. (Color online) Calculated $\gamma _{isf}^{fcc}$and $\delta =-\gamma _{isf}^{fcc}/\gamma _{usf}^{fcc}$values for metastable alloys [11], where the experimentally observed TWIP and TRIP effects are indicated [3, 4, 6, [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]].
Fig. 5. (Color online) Deformation microstructures at specified strains during tensile tests for the three Cr-Co-Ni alloys. (a-d) Cr36Co36Ni28 alloy, (e-h) CrCoNi alloy, (i-l) Cr30Co30Ni40 alloy.
Fig. 6. (Color online) EBSD images of deformation microstructures of the Cr36Co36Ni28 alloy tensioned to specified strains. (a-d) image quality maps, (e-h) phase maps consisting of fcc and hcp phases. Phase fraction of hcp phase is indicated by fHCP.
Fig. 8. (Color online) Tensile engineering stress-strain curves of our TWIP and TRIP Cr-Co-Ni alloys (a), in comparison with other TWIP and TRIP MEAs and HEAs in literature [6, 8, 25, 28, 29] shown in (b). The insert figure in (a) is a typical recrystallized microstructure for Cr36Co36Ni28 MEA. (c) Strain-hardening curves of our Cr-Co-Ni alloys in the initial stage of tensile tests.
Alloys (at.%) | Magnetism | $\gamma _{isf}^{fcc}$ | $\gamma _{usf}^{fcc}$ | δ | Deformation mode |
---|---|---|---|---|---|
Co | FM | 112 | 329 | 34% | DIMT[ |
Co70Ni30 | FM | -40 | 353 | 11.3% | DIMT[ |
Cr15Co55Ni30 (T3) | FM (Tc=385 K [ | -49 | 345 | 14.2% | DIMT [ |
Cr15Co50Ni35 (T4) | FM | -27 | 346 | 7.8% | DT [ |
Cr15Co45Ni40 (T5) | FM | -17 | 348 | 4.9% | DT [ |
Cr15Co40Ni45 (T6) | FM | -8 | 350 | 2.3% | DT [ |
Cr30Co30Ni40 (present) | PM | -7 | 346 | 2.0% | DT |
CrCoNi (present) | PM | -24 | 339 | 6.9% | DT [ |
Cr36Co36Ni28 (present) | PM | -38 | 340 | 11.2% | DIMT |
Cr20Co60Ni20 | FM | -85 | 333 | 26% | DIMT [ |
Cr30Co40Ni30 | PM | -23 | 359 | 6.4% | DT [ |
Cr40Co20Ni40 | PM | -18 | 308 | 5.8% | DT [ |
Co65Cr29Mo6 | PM | -85 | 327 | 26% | DIMT [ |
Cr25Fe30Co20Ni25 | PM | -2 | 291 | 0.7% | DT [ |
Cr25Fe20Co30Ni25 | PM | -10 | 304 | 3.3% | DT [ |
Cr25Fe15Co35Ni25 | PM | -14 | 311 | 4.5% | DT [ |
Cr25Fe30Co35Ni10 | PM | -35 | 290 | 12.1% | DIMT [ |
Cr25Fe35Co35Ni5 | PM | -41 | 292 | 14.4% | DIMT [ |
Cr25Fe40Co35Ni0 | PM | -49 | 295 | 16.6% | DIMT [ |
Cr25Fe20Co35Ni15 | PM | -16 | 305 | 5.2% | DT [ |
Cr25Fe15Co45Ni15 | PM | -36 | 312 | 11.5% | DIMT [ |
Cr10Mn30Fe50Co10 | PM | -31 | 281 | 11% | DIMT [ |
Cr10Mn40Fe40Co10 | PM | -8 | 262 | 3.1% | DT [ |
CrMnFeCoNi | PM | -6 | 280 | 2.1% | DT [ |
Cr20Mn15Fe15Co35Ni15 | PM | -23 | 290 | 7.9% | DT [ |
Cr25Mn15Fe10Co35Ni15 | PM | -39 | 286 | 13.6% | DIMT [ |
Cr20Mn20Fe20Co23Ni17 | PM | -11 | 275 | 4% | DT [ |
Cr20Mn20Fe20Co30Ni10 | PM | -32 | 284 | 11.2% | DIMT [ |
Table 1 Calculated $\gamma _{isf}^{fcc}$, $\gamma _{usf}^{fcc}$ and $\delta =-\gamma _{isf}^{fcc}/\gamma _{usf}^{fcc}$for metastable alloys at room temperature. The reported deformation modes are from Refs. [3, 4, 6, [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]].
Alloys (at.%) | Magnetism | $\gamma _{isf}^{fcc}$ | $\gamma _{usf}^{fcc}$ | δ | Deformation mode |
---|---|---|---|---|---|
Co | FM | 112 | 329 | 34% | DIMT[ |
Co70Ni30 | FM | -40 | 353 | 11.3% | DIMT[ |
Cr15Co55Ni30 (T3) | FM (Tc=385 K [ | -49 | 345 | 14.2% | DIMT [ |
Cr15Co50Ni35 (T4) | FM | -27 | 346 | 7.8% | DT [ |
Cr15Co45Ni40 (T5) | FM | -17 | 348 | 4.9% | DT [ |
Cr15Co40Ni45 (T6) | FM | -8 | 350 | 2.3% | DT [ |
Cr30Co30Ni40 (present) | PM | -7 | 346 | 2.0% | DT |
CrCoNi (present) | PM | -24 | 339 | 6.9% | DT [ |
Cr36Co36Ni28 (present) | PM | -38 | 340 | 11.2% | DIMT |
Cr20Co60Ni20 | FM | -85 | 333 | 26% | DIMT [ |
Cr30Co40Ni30 | PM | -23 | 359 | 6.4% | DT [ |
Cr40Co20Ni40 | PM | -18 | 308 | 5.8% | DT [ |
Co65Cr29Mo6 | PM | -85 | 327 | 26% | DIMT [ |
Cr25Fe30Co20Ni25 | PM | -2 | 291 | 0.7% | DT [ |
Cr25Fe20Co30Ni25 | PM | -10 | 304 | 3.3% | DT [ |
Cr25Fe15Co35Ni25 | PM | -14 | 311 | 4.5% | DT [ |
Cr25Fe30Co35Ni10 | PM | -35 | 290 | 12.1% | DIMT [ |
Cr25Fe35Co35Ni5 | PM | -41 | 292 | 14.4% | DIMT [ |
Cr25Fe40Co35Ni0 | PM | -49 | 295 | 16.6% | DIMT [ |
Cr25Fe20Co35Ni15 | PM | -16 | 305 | 5.2% | DT [ |
Cr25Fe15Co45Ni15 | PM | -36 | 312 | 11.5% | DIMT [ |
Cr10Mn30Fe50Co10 | PM | -31 | 281 | 11% | DIMT [ |
Cr10Mn40Fe40Co10 | PM | -8 | 262 | 3.1% | DT [ |
CrMnFeCoNi | PM | -6 | 280 | 2.1% | DT [ |
Cr20Mn15Fe15Co35Ni15 | PM | -23 | 290 | 7.9% | DT [ |
Cr25Mn15Fe10Co35Ni15 | PM | -39 | 286 | 13.6% | DIMT [ |
Cr20Mn20Fe20Co23Ni17 | PM | -11 | 275 | 4% | DT [ |
Cr20Mn20Fe20Co30Ni10 | PM | -32 | 284 | 11.2% | DIMT [ |
[1] | X.H. An, S.D. Wu, Z.G. Wang, Z.F. Zhang, Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems, Prog. Mater. Sci. 101 (2019) 1-45. |
[2] | S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys, Mater. Sci. Eng. A 387-389 (2004) 158-162. |
[3] | L. Remy, A. Pineau, Twinning and strain-induced f.c.c.→ h.c.p. transformation on the mechanical properties of Co-Ni-Cr-Mo alloys Mater.Sci. Eng. 26 (1976) 123-132. |
[4] | L. Remy, A. Pineau, Twinning and strain-induced F.C.C.→ H.C.P. transformation in the Fe-Mn-Cr-C system Mater.Sci. Eng. 28 (1976) 99-107. |
[5] | D.T. Pierce, J.A. Jimenes, J. Bentley, D. Raabe, J.E. Wittig, The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation Acta Mater. 100 (2015) 178-190. |
[6] | Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Design of a twinning-induced plasticity high entropy alloy Acta Mater. 94 (2015) 124-133. |
[7] | G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Microstructure evo- lution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy Acta Mater. 118 (2016) 152-163. |
[8] | Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy du- al-phase alloys overcome the strength-ductility trade-off Nature 534 (2016) 227. |
[9] | Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, A TRIP-assisted dual-phase high-en- tropy alloy: grain size and phase fraction effects on deformation behavior Acta Mater. 131 (2017) 323-335. |
[10] | B.C.D. Cooman, Y. Estrin, S.K. Kim, Twinning-induced plasticity (TWIP) steels Acta Mater. 142 (2018) 283-362. |
[11] | Z. Yang, S. Lu, Y. Tian, Z. Gu, H. Mao, J. Sun, L. Vitos, Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys J.Mater. Sci. Tech. 80 (2021) 66-74. |
[12] | X. Sun, S. Lu, R.W. Xie, X.H. An, W. Li, T.L. Zhang, C.X. Liang, X.D. Ding, Y. Wang, H. Zhang, L. Vitos, Can experiment determine the stacking fault energy of metastable alloys? Mater.Des. 199 (2021) 109396. |
[13] | L. Vitos, I.A. Abrikosov, B. Johansson, Anisotropic lattice distortions in random alloys from first principles theory Phys.Rev. Lett. 87 (2001) 156401. |
[14] | L. Vitos, Total-energy method based on the exact muffin-tin orbitals theory, Phys. Rev. B 64 (2001) 167. |
[15] | M. Jo, Y.M. Koo, B.J. Lee, B. Johansson, L. Vitos, S.K. Kwon, Theory for plas- ticity of face-centered cubic metals, Proc.Natl. Acad. Sci. U.S.A. 111 (2014) 6560-6565. |
[16] | Z.H. Jin, S.T. Dunham, H. Gleiter, H. Hahn, P. Gumbsch, A universal scaling of planar fault energy barriers in face-centered cubic metals, Scr.Mater. 64 (2011) 605-608. |
[17] | S. Lu, X. Sun, X.H. An, W. Li, Y. Chen, H. Zhang, L. Vitos, arXiv: 1910. 11748. |
[18] | E.H. Köster, A.R. Thölén, A. Howie, Stacking fault energies of Ni-Co-Cr alloys, Philos. Mag. 10 (108) (1964) 1093-1095. |
[19] | S. Yoshida, T. Ikeuchi, Y. Bai, N. Tsuji, Effect of Cobalt-Content on Mechanical Properties of Non-Equiatomic Co-Cr-Ni Medium Entropy Alloys, Mater Trans (2020) 61. |
[20] | A. Korner, H.P. Karnthaler, Weak-beam study of glide dislocations in hcp cobalt, Phil. Mag. A 48 (1983) 469-477. |
[21] | Y. Liu, H. Yang, L. Yan, B. Jiang, J. Ding, R. Woodward, Thermally induced fcc ↔ hcp martensitic transformation in Co-Ni, Acta Mater. 53 (2005) 3625-3634. |
[22] | Y. Koizumi, S. Suzuki, K. Yamanaka, B.-.S. Lee, K. Sato, Y. Li, S. Kurosu, H. Mat-sumoto, A. Chiba, Strain-induced martensitic transformation near twin bound- aries in a biomedical Co-Cr-Mo alloy with negative stacking fault energy, Acta Mater. 61 (2013) 1648-1661. |
[23] | W. Fang, R. Chang, X. Zhang, P. Ji, X. Wang, B. Liu, J. li, X. He, X. Qu, F. Yin, Effects of Cobalt on the structure and mechanical behavior of non-equal mo- lar CoxFe50 -xCr25Ni25 high entropy alloys, Mater. Sci. Eng.: A 723 (2018) 221-228. |
[24] | W. Fang, R. Chang, X. Zhang, P. Ji, B. Liu, X. Qu, F. Yin, Transformation induced plasticity effects of a non-equal molar Co-Cr-Fe-Ni high entropy alloy system, Metals (Basel) 8 (2018) 369. |
[25] | D. Wei, X. Li, W. Heng, Y. Koizumi, F. He, W.M. Choi, B.J. Lee, H.S. Kim, H. Kato, A. Chiba, Novel Co-rich high entropy alloys with superior tensile properties, Mater.Res. Lett. 7 (2019) 82-88. |
[26] | W. Lu, C.H. Liebscher, G. Dehm, D. Raabe, Z. Li, Bidirectional transformation enables hierarchical nanolaminate dual-phase high-entropy alloys, Adv.Mater. 30 (2018) 1-10. |
[27] | B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345 (2014) 1153-1158. |
[28] | D. Wei, X. Li, J. Jiang, W. Heng, Y. Koizumi, W.M. Choi, B.J. Lee, H.S. Kim, H. Kato, A. Chiba, Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys, Scr.Mater. 165 (2019) 39-43. |
[29] | S.F. Liu, Y. Wu, H.T. Wang, W.T. Lin, Y.Y. Shang, J.B. Liu, K. An, X.J. Liu, H. Wang, Z.P. Lu, Transformation-reinforced high-entropy alloys with superior mechani- cal properties via tailoring stacking fault energy, J.Alloys Compd. 792 (2019) 444-455. |
[30] | J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, M.J. Mills, The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy, Acta Mater. 132 (2017) 35-48. |
[31] | Y. Chen, Z. Zhou, P. Munroe, Z. Xie, Hierarchical nanostructure of CrCoNi film underlying its remarkable mechanical strength, Appl.Phys. Lett. 113 (2018) 081905. |
[32] | Q. Lin, J. Liu, X. An, H. Wang, Y. Zhang, X. Liao, Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy, Mater.Res. Lett. 6 (2018) 236-243. |
[33] | J. Liu, X. Guo, Q. Lin, Z. He, X. An, L. Li, P.K. Liaw, X. Liao, L. Yu, J. Lin, , Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures, Sci. China. Mater. 62 (6) (2019) 853-863. |
[34] | Y. Bu, Z. Li, J. Liu, H. Wang, D. Raabe, W. Yang, Nonbasal slip systems enable a strong and ductile hexagonal-close-packed high-entropy phase, Phys. Rev. Lett. 122 (2019) Article 075502. |
[35] | Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, W.A. Curtin, Mechanistic origin and pre- diction of enhanced ductility in magnesium alloys, Science 359 (6374) (2018) 447-452. |
[36] | Z. Wu, W.A. Curtin, The origins of high hardening and low ductility in magne-sium, Nature 526 (2015) 62-67. |
[1] | DongHwi Kim, Jee-Hyun Kang, Hojun Gwon, JooHyun Ryu, Sung-Joon Kim. Counter-balancing effects of Si on C partitioning and stacking fault energy of austenite in 10Mn quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 98(0): 248-257. |
[2] | Xiangguang Kong, Ying Yang, Shiyu Guo, Ran Li, Bo Feng, Daqiang Jiang, Meng Li, Changfeng Chen, Lishan Cui, Shijie Hao. Grain-size gradient NiTi ribbons with multiple-step shape transition prepared by melt-spinning [J]. J. Mater. Sci. Technol., 2021, 71(0): 163-168. |
[3] | Bingqiang Wei, Song Ni, Yong Liu, Min Song. Structural characterization of the {11$\overline 2$2} twin boundary and the corresponding stress accommodation mechanisms in pure titanium [J]. J. Mater. Sci. Technol., 2021, 72(0): 114-121. |
[4] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[5] | Kai Liu, Hai Zeng, Ji Qi, Xiaohua Luo, Xuanwei Zhao, Xianming Zheng, Yuan Yuan, Changcai Chen, Shengcan Ma, Ren Xie, Bing Li, Zhenchen Zhong. Microstructure and giant baro-caloric effect induced by low pressure in Heusler Co51Fe1V33Ga15 alloy undergoing martensitic transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 76-82. |
[6] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[7] | Huan Zhang, Yangxin Li, Yuxuan Liu, Qingchun Zhu, Xixi Qi, Gaoming Zhu, Jinhui Wang, Peipeng Jin, Xiaoqin Zeng. The effect of basal <a> dislocation on $\left\{ 11\bar{2}1 \right\}$ twin boundary evolution in a Mg-Gd-Y-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 81(0): 212-218. |
[8] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[9] | Yunwei Gui, Yujie Cui, Huakang Bian, Quanan Li, Lingxiao Ouyang, Akihiko Chiba. Role of slip and {10-12} twin on the crystal plasticity in Mg-RE alloy during deformation process at room temperature [J]. J. Mater. Sci. Technol., 2021, 80(0): 279-296. |
[10] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Huahai Mao, Jian Sun, Levente Vitos. Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 66-74. |
[11] | Yan Chen, Boyuan Gou, Xiangdong Ding, Jun Sun, Ekhard K.H. Salje. Real-time monitoring dislocations, martensitic transformations and detwinning in stainless steel: Statistical analysis and machine learning [J]. J. Mater. Sci. Technol., 2021, 92(0): 31-39. |
[12] | Zixiang Yan, Qiang Yang, Fanzhi Meng, Rui Ma, Rirong Bao, Xiaojuan Liu, Jian Meng, Xin Qiu. Interfacial precipitation in {10 $\bar{1}$ 2} twin boundaries of a Mg-Gd-Zn-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 93(0): 103-109. |
[13] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[14] | Runrun Xu, Miaoquan Li. Twinning and twin intersections in γ grains of Ti-42.9Al-4.6Nb-2Cr [J]. J. Mater. Sci. Technol., 2021, 88(0): 90-98. |
[15] | Pan Xie, Shucheng Shen, Cuilan Wu, Jiehua Li, Jianghua Chen. Unusual relationship between impact toughness and grain size in a high-manganese steel [J]. J. Mater. Sci. Technol., 2021, 89(0): 122-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||