J. Mater. Sci. Technol. ›› 2022, Vol. 99: 148-160.DOI: 10.1016/j.jmst.2021.05.042
• Research article • Previous Articles Next Articles
Haibo Zhanga, Metin Örnekb, Simanta Lahkara, Shuangxi Songa, Xiaodong Wanga, Richard A. Haberb, Kolan Madhav Reddya,*()
Received:
2021-02-26
Revised:
2021-05-26
Accepted:
2021-05-27
Published:
2022-02-10
Online:
2022-02-09
Contact:
Kolan Madhav Reddy
About author:
* E-mail address: kmreddy@sjtu.edu.cn (K.M. Reddy).Haibo Zhang, Metin Örnek, Simanta Lahkar, Shuangxi Song, Xiaodong Wang, Richard A. Haber, Kolan Madhav Reddy. Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide[J]. J. Mater. Sci. Technol., 2022, 99: 148-160.
Fig. 1 Electron microscopy characterization of starting boron powder. (a) SEM image of boron powder, showing the shape and size of two kinds of grains in equiaxial and rectangular morphology. (b) High-angle annular dark-field STEM image showing the size of particles consistent with (a). (c) BF-STEM image of boron powder particles. (d-f) Corresponding EDS maps highlighting the (d) B, (e) O, (f) Mg elements in red, blue and orange color, respectively.
Fig. 3. TEM characterization of starting boron powder. (a) TEM image and corresponding SAED pattern confirm the β-boron. (b) Zig-Zag crystalline lattice and corresponding SAED pattern confirm the τ-boron. (c, d) Images reveal the amorphous structure obtained from such typical particles analyzed in (e). (e) TEM-EDS confirms such particles composed of boron and oxygen elements.
Fig. 4. High-resolution TEM images of rhombohedral β-boron displayed from different orientations: (a) [001], (b)$\left[ 1\bar{1}0 \right]$, (c) [111] and (d) [211]. The insets showing the SAED patterns (upper right corner) and simulated HRTEM images (lower right corner) from the same direction, indicating the rhombohedral boron unit cell contains 106 boron atoms.
Fig. 5. X-ray diffraction patterns of (a) boron powder and samples sintered at different temperatures of (b) 1650 °C, (c) 1750 °C and (d) 1800 °C using SPS. Yellow, blue and red dashed lines match well with characteristic peaks of β-B, τ-B and boron suboxide phases, respectively.
Fig. 6. Experimental XRD profile of SPSed β-B compact is compared with the calculated (simulated) diffraction pattern of B96O4. The intensity peaks of calculated B96O4 match well with the unidentified peaks in experimental profile (shown by green dotted lines). The solid lines (orange) below correspond to boron suboxide (B6O).
Fig. 7. (a) A representative image of SPSed boron compact sample. SEM micrographs of samples sintered at temperatures of (b) 1650 °C, (c) 1750 °C and (d) 1800 °C, showing the porosity and the precipitates formed during SPS process.
Sintering Temperature (°C) | Density (g/cm3) | Knoop hardness (Hk, Load = 1 kg) | Vickers hardness (Load = 1 kg, GPa) | Nanoindentation hardness (GPa) | Young's modulus (GPa) | Fracture toughness (MPa m0.5) |
---|---|---|---|---|---|---|
1450 | 1.9035 | - | - | - | - | - |
1650 | 2.1906 | 1029.6 ± 29.3 | 12.6 ± 0.6 | 5.2 ± 0.6 | 125.3 ± 3.5 | 9.2 ± 3.3 |
1750 | 2.2964 | 1237.1 ± 35.0 | 19.9 ± 0.3 | 16.7 ± 0.6 | 308.5 ± 21.2 | 4.1 ± 0.8 |
1800 | 2.3472 | 2035.1 ± 48.4 | 30.5 ± 0.5 | 28.5 ± 2.2 | 444.4 ± 12.0 | 2.2 ± 0.3 |
Table 1 Density and mechanical properties of boron compact samples prepared by spark plasma sintering at different sintering temperatures.
Sintering Temperature (°C) | Density (g/cm3) | Knoop hardness (Hk, Load = 1 kg) | Vickers hardness (Load = 1 kg, GPa) | Nanoindentation hardness (GPa) | Young's modulus (GPa) | Fracture toughness (MPa m0.5) |
---|---|---|---|---|---|---|
1450 | 1.9035 | - | - | - | - | - |
1650 | 2.1906 | 1029.6 ± 29.3 | 12.6 ± 0.6 | 5.2 ± 0.6 | 125.3 ± 3.5 | 9.2 ± 3.3 |
1750 | 2.2964 | 1237.1 ± 35.0 | 19.9 ± 0.3 | 16.7 ± 0.6 | 308.5 ± 21.2 | 4.1 ± 0.8 |
1800 | 2.3472 | 2035.1 ± 48.4 | 30.5 ± 0.5 | 28.5 ± 2.2 | 444.4 ± 12.0 | 2.2 ± 0.3 |
Fig. 8 STEM-EDS mapping of the precipitates on a sintered sample surface at 1650 °C. (a) HAADF-STEM of an area with precipitates in the sample. Corresponding EDS maps highlighted with the (b) B (red color), (c) O (blue color), (d) Mg (orange color).
Fig. 10. Characterization of boron bulk sample sintered at 1650 °C. (a) TEM image showing the β-B and boron-rich oxide grains. (b) The HRTEM image displays the interface between the precipitate and the matrix, highlighted by the red dotted line revealing semi coherent interface. The image shows the crystal lattice of β-B $\left( 1\bar{2}0 \right)$ (on left) and the crystal lattice of boron rich oxide of $\left( 1\bar{1}00 \right)$ plane (on right). (c) SAED pattern obtained from the boron-rich oxide grain along [0001] direction. (d) Atomic resolution image of boron rich oxide along [0001] direction.
Fig. 11. Characterization of boron compact sample sintered at 1800 °C. (a) HAADF-STEM of an area with boron-rich oxide precipitates in sample sintered at 1800 °C. (b, c) SAED pattern and HRTEM image taken along $\left[ 1\bar{1}00 \right]$ zone axis from a precipitate marked with white box. (d) Enlarged HRTEM image of the area in (c) marked by a square.
Fig. 12. Experimental TEM diffraction patterns acquired from the newly formed boron suboxide crystals along the directions of (a)${{\left[ 111 \right]}_{r}}={{\left[ 0001 \right]}_{h}}$, (b) ${{\left[ 110 \right]}_{r}}={{\left[ 1100 \right]}_{h}}$(c) ${{\left[ \bar{1}10 \right]}_{r}}$=$[1\bar{2}1{{\overline{3}]}_{h}}$ and (d) ${{\left[ 0\bar{1}0 \right]}_{r}}=[01\bar{1}{{\overline{1}]}_{h}}$match well (in both reciprocal space distances and angles) with the simulated diffraction patterns of B96O4. The symbol ‘r’ is denoted for rhombohedral and ‘h’ is denoted for hexagonal direction.
Fig. 13. (a) HAADF-STEM image of a boron-rich oxide particle on the β-B sample sintered at 1800 °C, as marked by a square. (b, c) Elemental 2-D distribution maps of boron and oxygen in the area marked by a square in (a), respectively. (d) EELS spectra extracted from β-B and B-O marked region in Fig. 10(a).
Fig. 14. (a) Representative load-depth curves and (b) hardness-depth curves from the nanoindentation on the dense boron sample sintered at 1650 °C, 1750 °C and 1800 °C.
Fig. 15. Nanoindentation characterization of 1800 °C sintered sample. (a) Topology image after nanoindentation tests at applied loads of 10 mN and 5 mN. (b) Representative load-depth curves taken from the β-B and boron-rich oxide at 5 mN load. A pop-in can be detected on the curve of β-boron, which may correspond to the phase transformation. The obtained hardness (c) and reduced modulus (d) of boron and boron-rich oxide.
[1] |
A.R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C.W. Glass, Z. Liu, T. Yu, O.O. Ku-rakevych, V.L. Solozhenko, Nature 457 (2009) 863-867.
DOI URL |
[2] |
G. Parakhonskiy, N. Dubrovinskaia, E. Bykova, R. Wirth, L. Dubrovinsky, Sci. Rep. 1 (2011) 96.
DOI PMID |
[3] | L.V. Mccarty, J.S. Kasper, F.H. Horn, B.F. Decker, A.E. Newkirk, J. Am. Chem. Soc. 80 (1958) 2592. |
[4] |
C.P. Talley, S.L. Placa, B. Post, Acta Cryst. 13 (1960) 271-272.
DOI URL |
[5] |
M. Vlasse, R. Naslain, J.S. Kasper, K. Ploog, J. Solid State Chem. 28 (1979) 289-301.
DOI URL |
[6] |
R.E. Hughes, C.H.L. Kennard, D.B. Sullenger, H.A. Weakliem, J.L. Hoard, J. Am. Chem. Soc. 85 (1963) 361-362.
DOI URL |
[7] | A.R. Oganov, V.L. Solozhenko, C. Gatti, O.O. Kurakevych, Y.L. Godec, J. Superhard Mater. 33 (2011) 363-379. |
[8] | E.A. Ekimov, Y.B. Lebed, N. Uemura, K. Shirai, T.B. Shatalova, V.P. Sirotinkin, J. Mater. Res. 31 (2016) 2773-2779. |
[9] |
H. Zhang, Y. Shen, S. Lahkar, T. Fujita, K. Hemker, Q. An, K.M. Reddy, Scr. Mater. 194 (2021) 113685.
DOI URL |
[10] |
B.F. Decker, J.S. Kasper, Acta Cryst. 12 (2010) 503-506.
DOI URL |
[11] | D.E. Sands, J.L. Hoard, J. Am. Chem. Soc. 79 (1957) 5582-5583. |
[12] |
T. Ogitsu, E. Schwegler, G. Galli, Chem. Rev. 113 (2013) 3425-3449.
DOI URL |
[13] |
R.F. Barth, A.H. Soloway, R.G. Fairchild, R.M. Brugger, Cancer 70 (1992) 2995-3007.
PMID |
[14] | D.E. Mahagin, R.E. Dahl, in: V.I. Matkovich (Ed.), Boron and Refractory Borides, Springer, Berlin, 1977, pp. 613-632. |
[15] | J.L. Hoard, D.B. Sullenger, C.H.L. Kennard, J.Solid State Chem. 1 (1970) 268-277. |
[16] |
G.A. Slack, C.I. Hejna, M.F. Garbauskas, J. Solid State Chem. 76 (1988) 52-63.
DOI URL |
[17] | V.L. Solozhenko, O.O. Kurakevych, A.R. Oganov, J. Superhard Mater. 30 (2008) 428-429. |
[18] |
D. Gabunia, O. Tsagareishvili, G. Darsavelidze, D. Lezhava, M. Antadze, L. Gabunia, J. Solid State Chem. 177 (2004) 600-604.
DOI URL |
[19] | W. Stumpf, K.C. Buschbeck, E. Amberger, in: Elemental Boron, Boron Carbides, eighth ed., Springer, Berlin, 1981, pp. 1-242. |
[20] |
A.R. Badzian, Appl. Phys. Lett. 53 (1988) 2495-2497.
DOI URL |
[21] | H.F. Rizzo, W.C. Simmons, H.O. Bielstein, J. Electrochem. Soc. 109 (1962) 1079. |
[22] |
G.I. Kalandadze, S.O. Shalamberidze, A.B. Peikrishvili, J. Solid State Chem. 154 (2000) 194-198.
DOI URL |
[23] |
J. Qin, N. Nishiyama, H. Ohfuji, T. Shinmei, L. Lei, D. He, T. Irifune, Scr. Mater. 67 (2012) 257-260.
DOI URL |
[24] | Z.A. Munir, U. Anselmi Tamburini, M. Ohyanagi, J. Mater.Sci. 41 (2006) 763-777. |
[25] | N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N.A. Aqeeli, J. Nanomater. 2012 (2012) 1-13. |
[26] |
K.M. Reddy, N. Kumar, B. Basu, Scr. Mater. 62 (2010) 435-438.
DOI URL |
[27] | K.M. Reddy, A. Mukhopadhyay, B. Basu, J. Euro, J. Eur. Ceram. Soc. 30 (2010) 3363-3375. |
[28] |
V. Mamedov, Powder Metall. 45 (2002) 322-328.
DOI URL |
[29] |
E. Olevsky, I. Bogachev, A. Maximenko, Scr. Mater. 69 (2013) 112-116.
DOI URL |
[30] | D.S. Perera, M. Tokita, S. Moricca, J. Euro, Ceram. Soc. 18 (1998) 401-404. |
[31] | F.W. Karau, Method for Purifying Elemental Boron, US Patent, No.20110176983A1,2011. |
[32] |
J.L. Hoard, D.B. Sullenger, C.H.L. Kennard, R.E. Hughes, J. Solid State Chem. 1 (1970) 268-277.
DOI URL |
[33] | G.R. Antis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64 (1981) 553-558. |
[34] | A.C. Reber, S.N. Khanna, J. Chem. Phys. 142 (2015) 054304. |
[35] | Q. An, K.M. Reddy, K.Y. Xie, K.J. Hemker, W.A. Goddard, III, Phys. Rev. Lett. 117 (2016) 085501. |
[36] | H. Bolmgren, T. Lundström, S. Okada, AIP Conf. Proc. 231 (1991) 197-200. |
[37] | M. Kobayashi, I. Hogashi, C. Brodhag, F. Thevenot, J. Mater. Sci. 28 (1993) 2129-2134. |
[38] |
D. Music, J.M. Schneider, V. Kugler, S. Nakao, J. Vac. Sci. Technol. A 20 (2002) 335-337.
DOI URL |
[39] |
T. Fujita, P. Guan, K.M. Reddy, A. Hirata, J. Guo, M. Chen, Appl. Phys. Lett. 104 (2014) 021907.
DOI URL |
[40] |
K.M. Reddy, J.J. Guo, Y. Shinoda, T. Fujita, A. Hirata, J.P. Singh, J.W.. McCauley, M.W. Chen, Nat. Commun. 3 (2012) 1052.
DOI URL |
[41] |
K.M. Reddy, A. Hirata, P. Liu, T. Fujita, T. Goto, M.W. Chen, Scr. Mater. 76 (2014) 9-12.
DOI URL |
[42] |
K.M. Reddy, P. Liu, A. Hirata, T. Fujita, M.W. Chen, Nat. Commun. 4 (2013) 2483.
DOI URL |
[43] |
O.T. Johnson, I. Sigalas, M. Herrmann, Ceram. Int. 36 (2010) 2401-2406.
DOI URL |
[44] |
R. Karre, Y. Hu, S. Song, X. Wang, J. Joardar, K.M. Reddy, Mater. Charact. 176 (2021) 111106.
DOI URL |
[45] |
M. Herrmann, I. Sigalas, M. Thiele, M.M. Muller, H.J. Kleebe, A. Michaelis, Int. J. Refract. Met. Hard Mater. 39 (2013) 53-60.
DOI URL |
[46] |
J. Li, J. Van Vliet, T. Zhu, S. Yip, S. Suresh, Nature 418 (2002) 307-310.
DOI URL |
[47] | K.M. Reddy, D. Guo, S. Song, C. Cheng, J. Han, X. Wang, Q. An, M. Chen, Sci. Adv. 7 (2021) eabc6714. |
[48] | A.C. Schuh, Mater. Today 9 (2006) 32-40. |
[49] | H.L. Johnson, M.K. Walker, J. Am. Chem. Soc. 55 (1933) 187-193. |
[50] | Q. An, K.M. Reddy, H. Dong, M.W. Chen, A.R. Oganov, W.A Goddard, III, Nano Lett. 16 (2016) 4236-4242. |
[51] |
C. Kunka, Q. An, N. Rudawski, G. Subhash, J. Zheng, V. Halls, J. Singh, Acta Mater. 147 (2018) 195-202.
DOI URL |
[52] |
K.M. Reddy, P. Liu, Y. Shen, T. Goto, Q. An, M.W. Chen, Mater. Res. Lett. 7 (2019) 75-81.
DOI URL |
[53] |
A. Awasthi, G. Subhash, Prog. Mater. Sci. 112 (2020) 100664.
DOI URL |
[1] | Jing Wang, Ning Wang, Mengnan Liu, Chengyue Ge, Baorong Hou, Guichang Liu, Wen Sun, Yiteng Hu, Yanli Ning. Hexagonal boron nitride/poly(vinyl butyral) composite coatings for corrosion protection of copper [J]. J. Mater. Sci. Technol., 2022, 96(0): 103-112. |
[2] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[3] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[4] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
[5] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[6] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[7] | Hongmei Jin, Renguo Guan, Xianxiang Huang, Ying Fu, Jin Zhang, Xiaolin Chen, Yu Wang, Fei Gao, Di Tie. Understanding the precipitation mechanism of copper-bearing phases in Al-Mg-Si system during thermo-mechanical treatment [J]. J. Mater. Sci. Technol., 2022, 96(0): 226-232. |
[8] | Taiqian Mo, Zejun Chen, Dayu Zhou, Guangming Lu, Yongmeng Huang, Qing Liu. Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites [J]. J. Mater. Sci. Technol., 2022, 99(0): 28-38. |
[9] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
[10] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[11] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[12] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[13] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[14] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[15] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||