J. Mater. Sci. Technol. ›› 2022, Vol. 119: 209-218.DOI: 10.1016/j.jmst.2021.12.045
• Research Article • Previous Articles Next Articles
Hui Wena,b, Ziyu Yia,b, Zhenyu Hua,b, Rui Guoa,b,*(), Xuanwen Liua,b,*(
)
Received:
2021-10-06
Revised:
2021-12-15
Accepted:
2021-12-15
Published:
2022-08-20
Online:
2022-03-09
Contact:
Rui Guo,Xuanwen Liu
About author:
lxw@neuq.edu.cn (X. Liu).Hui Wen, Ziyu Yi, Zhenyu Hu, Rui Guo, Xuanwen Liu. Design strategy for low-temperature sulfur etching to achieve high-performance hollow multifunctional electrode material[J]. J. Mater. Sci. Technol., 2022, 119: 209-218.
Fig. 2. (a) XRD patterns of S2-CoCd-350. (b, c) TEM of S2-CoCd-350 dodecahedron (The illustration shows corresponding SAED). (d) EDS element mapping of Co, Cd, S, O, C, and N of S2-CoCd-350 dodecahedron. (e-g) TEM, HRTEM and corresponding SAED patterns of S2-CoCd-350 hollow nanowires. (h) EDS element mapping of Co, Cd, S, O, C, and N of S2-CoCd-350 hollow nanowires.
Fig. 3. (a) OER curve fitting graph of catalyst S2-CoCd-350. (b, c) OER curves and Tafel plots curves for CoCd, CoCd-ZIF, CoCd-350, and S2-CoCd-350. (d) Linear plots of cathodic charging currents versus the scan rate derived from cyclic voltammetry diagrams under different scan rates. (e, f) HER curves and Tafel plots curves for CoCd, CoCd-ZIF, CoCd-350, and S2-CoCd-350.
Fig. 4. (a) EPR spectra of S2-CoCd-350 samples. (b) Survey XPS spectrum. High-resolution XPS spectra of (c) S 2p (d) Cd 3d (e) Co 2p of S2-CoCd-350. (f) S2-CoCd-350 i-t curve in 3 h.
Fig. 5. Electrochemical characterizations: (a) CV curves. (b) GCD curves. (c) Specific capacitances. (d) CV curves at 10-50 mV/s. (e) GCD curves at a range of 5-30 mA cm-2. (f) Nyquist plots. (g) b value of S2-CoCd-350. (h) Capacitance contribution. (i) Cycle performance at a current density of 30 mA/cm2.
Fig. 6. (a) Schematic illustration showing the fabrication of supercapttery device and (b) CV curves of S2-CoCd-350 and biomass-derived AC electrodes measured individually at a scan rate of 50 mV/s, indicating possible cell potential of 1.7 V. (c) CV curves of the supercapattery system measured at various scan rates of 10-100 mV/s. (d) CV curves of S2-CoCd-350//AC device measured at various potential windows of 0-1.6 to 0-2 V. (e) GCD curves of the supercapattery system measured at various current densities of 5-30 mA/cm2. (f) Ragone plot and (g) cycling stability of the supercapttery.
[1] |
K. Mamtani, D. Jain, D. Dogu, V. Gustin, S. Gunduz, A.C. Co, U.S. Ozkan, Appl. Catal. B 220 (2018) 88-97.
DOI URL |
[2] |
Y.Y. Liang, Y.G. Li, H.L. Wang, J.G. Zhou, J. Wang, T. Regier, H.J. Dai, Nat. Mater. 10 (2011) 780-786.
DOI URL |
[3] |
P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845-854.
DOI URL |
[4] | Z.Y. Ni, H. Wen, S.Q. Zhang, R. Guo, N. Su, X.W. Liu, C.M. Liu, ChemCatChem 12 (2020) 4962-4999. |
[5] |
X.X. Zou, Y. Zhang, Chem. Soc. Rev. 44 (2015) 5148-5180.
DOI URL |
[6] |
Y. Jiao, Y. Zheng, M.T. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 44 (2015) 2060-2086.
DOI PMID |
[7] |
Y.M. Shi, B. Zhang, Chem. Soc. Rev. 45 (2016) 1529-1541.
DOI URL |
[8] |
S.Q. Zhang, T. Yu, H. Wen, Z.Y. Ni, Y. He, R. Guo, J.H. You, X.W. Liu, Chem. Comm. 56 (2020) 15387-15405.
DOI URL |
[9] |
M. Gorlin, P. Chernev, J.F. de Araujo, T. Reier, S. Dresp, B. Paul, R. Krahnert, H. Dau, P. Strasser, J. Am. Chem. Soc. 138 (2016) 5603-5614.
DOI URL |
[10] |
M. Gorlin, J.F. de Araujo, H. Schmies, D. Bernsmeier, S. Dresp, M. Gliech, Z. Jusys, P. Chernev, R. Kraehnert, H. Dau, P. Strasser, J. Am. Chem. Soc. 139 (2017) 2070-2082.
DOI URL |
[11] |
J.T. Zhang, Z.H. Zhao, Z.H. Xia, L.M. Dai, Nat. Nanotechnol. 10 (2015) 444-452.
DOI URL |
[12] |
S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.P. Grote, A. Savan, B.R. Shrestha, S. Merzlikin, B. Breitbach, A. Ludwig, K.J.J. Mayrhofer, Catal. Today 262 (2016) 170-180.
DOI URL |
[13] |
T. Audichon, T.W. Napporn, C. Canaff, C. Morais, C. Comminges, K.B. Kokoh, J. Phys. Chem. C 120 (2016) 2562-2573.
DOI URL |
[14] | C. Kim, S.H. Kim, S. Lee, I. Kwon, S.H. Kim, S. Kim, C. Seok, Y.S. Park, Y.J. Kim, Energy Chem. 64 (2022) 364-371. |
[15] |
M.S. Burke, L.J. Enman, A.S. Batchellor, S.H. Zou, S.W. Boettcher, Chem. Mater. 27 (2015) 7549-7558.
DOI URL |
[16] |
Y. Hou, M.R. Lohe, J. Zhang, S.H. Liu, X.D. Zhuang, X.L. Feng, Energy Environ. Sci. 9 (2016) 478-483.
DOI URL |
[17] |
M. Winter, R.J. Brodd, Chem. Rev. 104 (2004) 4245-4269.
DOI URL |
[18] | T. Wang, K.L. Li, Q.J. Le, S.J. Zhu, X.L. Guo, D.B. Jiang, Y.X. Zhang, J. Colloid In- terface Sci. 594 (2021) 812-823. |
[19] |
M.L. Yan, Y.D. Yao, J.Q. Wen, L. Long, M.L. Kong, G.G. Zhang, X.M. Liao, G.F. Yin, Z.B. Huang, ACS Appl. Mater. Interfaces 8 (2016) 24525-24535.
DOI URL |
[20] |
Z.J. Fan, J. Yan, T. Wei, L.J. Zhi, G.Q. Ning, T.Y. Li, F. Wei, Adv. Funct. Mater. 21 (2011) 2366-2375.
DOI URL |
[21] |
L.F. Shen, L. Yu, H.B. Wu, X.Y. Yu, X.G. Zhang, X.W. Lou, Nat. Commun. 6 (2015) 6694.
DOI URL |
[22] |
X.H. Cao, C.L. Tan, M. Sindoro, H. Zhang, Chem. Soc. Rev. 46 (2017) 2660-2677.
DOI URL |
[23] |
N. Raza, T. Kumar, V. Singh, K.H. Kim, Coord. Chem. Rev. 430 (2021) 213660.
DOI URL |
[24] |
X.Y. Yu, L. Yu, X.W. Lou, Adv. Energy Mater. 6 (2016) 1501333.
DOI URL |
[25] | Y.Q. Zhang, L. Tao, C. Xie, D.D. Wang, Y.Q. Zou, R. Chen, Y.Y. Wang, C.K. Jia, S.Y. Wang, Adv. Mater. 32 (2020) 22. |
[26] |
W.M. Li, C. Wang, X.F. Lu, J. Mater. Chem. A 9 (2021) 3786-3827.
DOI URL |
[27] |
F.H. Yang, H. Gao, J.N. Hao, S.L. Zhang, P. Li, Y.Q. Liu, J. Chen, Z.P. Guo, Adv. Funct. Mater. 29 (2019) 1808291.
DOI URL |
[28] | C. Huang, A.M. Gao, F.Y. Yi, Y.C. Wang, D. Shu, Y.S. Liang, Z.H. Zhu, J.Z. Ling, J.N. Hao, Chem. Eng. J. 419 (2021) 10. |
[29] |
B.Y. Xiong, L.S. Chen, J.L. Shi, ACS Catal. 8 (2018) 3688-3707.
DOI URL |
[30] | Z.X. Wu, Y. Zhao, W. Jin, B.H. Jia, J. Wang, T.Y. Ma, Adv. Funct. Mater. 31 (2021) 36. |
[31] |
L. Zhuang, Y. Jia, H. Liu, Z. Li, M. Li, L. Zhang, X. Wang, D. Yang, Z. Zhu, X. Yao, Angew. Chem. Int. Ed. 59 (2020) 14664-14670.
DOI URL |
[32] | L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, D. Voiry, ACS Nano 13 (2019) 6 824-6 834. |
[33] |
X. Lou, Y. Ning, C. Li, X. Hu, M. Shen, B. Hu, Sci. China Mater. 61 (2018) 1040-1048.
DOI URL |
[34] |
K. Maity, K. Bhunia, D. Pradhan, K. Biradha, ACS Appl. Mater. Interfaces 9 (2017) 37548-37553.
DOI URL |
[35] |
Z.B. Zhai, K.J. Huang, X. Wu, Nano Energy 47 (2018) 89-95.
DOI URL |
[36] |
Q. Wang, R. Zou, W. Xia, J. Ma, B. Qiu, A. Mahmood, R. Zhao, Y. Yang, D. Xia, Q. Xu, Small 11 (2015) 2511-2517.
DOI URL |
[37] | J.G. Li, H. Sun, L. Lv, Z. Li, X. An, C. Xu, Y. Li, C. Wang, ACS Appl. Mater. Inter- faces 11 (2019) 8106-8114. |
[38] |
H. Wen, S. Zhang, T. Yu, Z. Yi, R. Guo, Nanoscale 13 (2021) 12058-12087.
DOI URL |
[39] |
J.H. You, W.T. Bao, L. Wang, A.G. Yan, R. Guo, J. Alloy. Compd. 866 (2021) 158921.
DOI URL |
[40] |
J.H. You, L. Wang, W.T. Bao, A.G. Yan, R. Guo, J. Mater. Sci. 56 (2021) 6732-6744.
DOI URL |
[41] |
J. Park, T. Kwon, J. Kim, H. Jin, H.Y. Kim, B. Kim, S.H. Joo, K. Lee, Chem. Soc. Rev. 47 (2018) 8173-8202.
DOI URL |
[42] |
S. Wang, Y. Fang, X. Wang, X.W. Lou, Angew. Chem. Int. Ed. 58 (2019) 760-763.
DOI URL |
[43] | L. Zhang, C. Lu, F. Ye, R. Pang, Y. Liu, Z. Wu, Z. Shao, Z. Sun, L. Hu, Adv. Mater. 33 (2021) 2007523. |
[44] |
F. Gong, S. Ye, M. Liu, J. Zhang, L. Gong, G. Zeng, E. Meng, P. Su, K. Xie, Y. Zhang, J. Liu, Nano Energy 78 (2020) 105284.
DOI URL |
[45] |
R. Zhang, W. Ke, S. Chen, X. Yue, Z. Hu, T. Ning, Appl. Surf. Sci. 546 (2021) 148819.
DOI URL |
[46] | A. Naderi, X. Yong, M. Karamad, J. Cai, Y. Zang, I. Gates, S. Siahrostami, G. Wang, Appl. Surf. Sci. 542 (2021) 14 86 81. |
[47] |
J. Lin, H. Wang, J. Cao, F. He, J. Feng, J. Qi, Colloid Interface Sci. 571 (2020) 260-266.
DOI URL |
[48] |
B. Qin, Y. Li, H. Wang, G. Yang, Y. Cao, H. Yu, Q. Zhang, H. Liang, F. Peng, Nano Energy 60 (2019) 43-51.
DOI URL |
[49] |
T. Zheng, C. Shang, Z. He, X. Wang, C. Cao, H. Li, R. Si, B. Pan, S. Zhou, J. Zeng, Angew. Chem. Int. Ed. 58 (2019) 14764-14769.
DOI URL |
[50] |
R. Guo, Y. He, T. Yu, P. Cheng, J. You, H. Lin, C.T. Chen, T. Chan, X. Liu, Z. Hu, Chem. Eng. J. 420 (2021) 127587.
DOI URL |
[51] |
C. Huang, A. Gao, F. Yi, Y. Wang, D. Shu, Y. Liang, Z. Zhu, J. Ling, J. Hao, Chem. Eng. J. 419 (2021) 129643.
DOI URL |
[52] | M. Dai, H. Liu, D. Zhao, X. Zhu, A. Umar, H. Algarni, X. Wu, A.C.S. Appl, Nano Mater. 4 (2021) 5461-5468. |
[53] |
Y. Tong, H. Liu, M. Dai, L. Xiao, X. Wu, Chin. Chem. Lett. 31 (2020) 2295-2299.
DOI URL |
[54] |
B. Shen, R. Guo, J. Lang, L. Liu, L. Liu, X.J. Yan, Mater. Chem. A 4 (2016) 8316-8327.
DOI URL |
[55] |
T. Xia, Y. Liu, M. Dai, Q. Xia, X. Wu, Dalton Trans. 50 (2021) 4045-4052.
DOI URL |
[56] | G. Nagaraju, S.C. Sekhar, B. Ramulu, S.K. Hussain, D. Narsimulu, J.S. Yu, Na- nomicro Lett. 13 (2021) 17. |
[57] | Y. He, S. Yang, Y. Fu, F. Wang, J. Ma, G. Wang, G. Chen, M. Wang, R. Dong, P. Zhang, X. Feng, Small Struct. 2 (2021) 2000095. |
[58] |
M.F. El-Kady, R.B. Kaner, Nat. Commun. 4 (2013) 1475.
DOI PMID |
[59] |
Y. Liang, X. Luo, W. Weng, Z. Hu, Y. Zhang, W. Xu, Z. Bi, M. Zhu, ACS Appl. Mater. Interfaces 13 (2021) 28433-28441.
DOI URL |
[60] |
T. Liu, J. Liu, L. Zhang, B. Cheng, J. Yu, J. Mater. Sci. Technol. 47 (2020) 113-121.
DOI URL |
[61] |
S.H. Jiang, J. Ding, R.H. Wang, F.Y. Chen, J. Sun, Y.X. Deng, X.L. Li, Rare Met. 40 (2021) 3520-3530.
DOI URL |
[62] |
H. Wu, W. Zhang, S. Kandambeth, O. Shekhah, M. Eddaoudi, H.N. Alshareef, Adv. Energy Mater. 9 (2019) 1900482.
DOI URL |
[1] | Xiaolin Hu, Tongxin Yang, Zuguang Yang, Zongyang Li, Ronghua Wang, Meng Li, Guangsheng Huang, Bin Jiang, Chaohe Xu, Fusheng Pan. Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting [J]. J. Mater. Sci. Technol., 2022, 115(0): 19-28. |
[2] | Ning Li, Jingrui Han, Kaili Yao, Mei Han, Zumin Wang, Yongchang Liu, Lihua Liu, Hongyan Liang. Synergistic phosphorized NiFeCo and MXene interaction inspired the formation of high-valence metal sites for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 90-97. |
[3] | Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis [J]. J. Mater. Sci. Technol., 2022, 98(0): 143-150. |
[4] | Wangwang Qian, Zhe Chen, Jinfeng Zhang, Lichang Yin. Monolayer MoSi2N4-x as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction [J]. J. Mater. Sci. Technol., 2022, 99(0): 215-222. |
[5] | Shi Zhongting, Sun Gan, Yuan Ruiwen, Chen Wenxiao, Wang Zhuo, Zhang Lu, Zhan Ke, Zhu Min, Yang Junhe, Zhao Bin. Scalable fabrication of NiCo2O4/reduced graphene oxide composites by ultrasonic spray as binder-free electrodes for supercapacitors with ultralong lifetime [J]. J. Mater. Sci. Technol., 2022, 99(0): 260-269. |
[6] | Kena Wu, Xiaonan Wei, Deng Li, Peng Hu. Nitrogen incorporated nickel molybdenum sulfide as efficient electrocatalyst for overall water splitting [J]. J. Mater. Sci. Technol., 2022, 99(0): 270-276. |
[7] | Xinqiang Wang, Bin Wang, Yuanfu Chen, Mengya Wang, Qi Wu, Katam Srinivas, Bo Yu, Xiaojuan Zhang, Fei Ma, Wanli Zhang. Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting [J]. J. Mater. Sci. Technol., 2022, 105(0): 266-273. |
[8] | Shicheng Li, Hongyan Liang, Chong Li, Yongchang Liu. Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 19-27. |
[9] | Mohan Reddy Pallavolu, Arghya Narayan Banerjee, Ramesh Reddy Nallapureddy, Sang W. Joo. Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor [J]. J. Mater. Sci. Technol., 2022, 96(0): 332-344. |
[10] | Chuanyin Xiong, Mengrui Li, Qing Han, Wei Zhao, Lei Dai, Yonghao Ni. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances [J]. J. Mater. Sci. Technol., 2022, 97(0): 190-200. |
[11] | Taegun Kim, Chanwoo Park, Edmund P. Samuel, Yong-Il Kim, Seongpil An, Sam S. Yoon. Wearable sensors and supercapacitors using electroplated-Ni/ZnO antibacterial fabric [J]. J. Mater. Sci. Technol., 2022, 100(0): 254-264. |
[12] | Dhananjay Mishra, Niraj Kumar, Ajit Kumar, Seung Gi Seo, Sung Hun Jin. Mitigation on self-discharge behaviors via morphological control of hierarchical Ni-sulfides/Ni-oxides electrodes for long-life-supercapacitors [J]. J. Mater. Sci. Technol., 2022, 113(0): 217-228. |
[13] | Shuang Liu, Enhui Wang, Shichun Liu, Chunyu Guo, Hailong Wang, Tao Yang, Xinmei Hou. Mild fabrication of SiC/C nanosheets with prolonged cycling stability as supercapacitor [J]. J. Mater. Sci. Technol., 2022, 110(0): 178-186. |
[14] | Dinesh J. Ahirrao, Ajay Kumar Pal, Vikalp Singh, Neetu Jha. Nanostructured porous polyaniline (PANI) coated carbon cloth (CC) as electrodes for flexible supercapacitor device [J]. J. Mater. Sci. Technol., 2021, 88(0): 168-182. |
[15] | Pingping Yao, Chenyang Li, Jiali Yu, Shuo Zhang, Meng Zhang, Huichao Liu, Muwei Ji, Guangtao Cong, Tao Zhang, Caizhen Zhu, Jian Xu. High performance flexible energy storage device based on copper foam supported NiMoO4 nanosheets-CNTs-CuO nanowires composites with core-shell holey nanostructure [J]. J. Mater. Sci. Technol., 2021, 85(0): 87-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||