J. Mater. Sci. Technol. ›› 2022, Vol. 99: 260-269.DOI: 10.1016/j.jmst.2021.05.040
• Research article • Previous Articles Next Articles
Shi Zhongting, Sun Gan, Yuan Ruiwen, Chen Wenxiao, Wang Zhuo, Zhang Lu, Zhan Ke, Zhu Min, Yang Junhe, Zhao Bin*()
Received:
2020-12-03
Revised:
2021-05-14
Accepted:
2021-05-23
Published:
2022-02-10
Online:
2022-02-09
Contact:
Zhao Bin
About author:
* E-mail address: zhaobin@usst.edu.cn (B. Zhao).Shi Zhongting, Sun Gan, Yuan Ruiwen, Chen Wenxiao, Wang Zhuo, Zhang Lu, Zhan Ke, Zhu Min, Yang Junhe, Zhao Bin. Scalable fabrication of NiCo2O4/reduced graphene oxide composites by ultrasonic spray as binder-free electrodes for supercapacitors with ultralong lifetime[J]. J. Mater. Sci. Technol., 2022, 99: 260-269.
Fig. 3. SEM (a, b) and TEM (c, d) images of the NiCo2O4/rGO fabricated with feedstock ratio of 1:15; (e) low-magnification SEM image and EDS elemental mapping.
Fig. 4. XPS spectra of the NiCo2O4/rGO composite fabricated with feedstock ratio of 1:15: (a) survey spectrum; high- resolution spectrum of C 1s (b), Ni 2p (c) and Co 2p (d).
Fig. 5. Electrochemical performance of the NiCo2O4/rGO fabricated with different GO/metal precursor ratios: (a) CV curves at 20 mV s-1; (b) GCD curves at 1 A g-1; (c) Specific capacitance as a function of current density; (d) Nyquist plots; (e) Cycling stability at 20 A g-1.
Electrode materials | Synthesis method | Specific capacitance (F g-1) | Capacitance retention | Refs. |
---|---|---|---|---|
NiCo2O4/rGO | Ultrasonic spraying | 871 (1 A g-1) | 134% (30000) | This work |
Co3O4-NiO/GF | Immersion | 766 (1 A g-1) | 86% (5000) | [ |
NiCo2O4@MnO2 | Electrodepositing | 913.6 (0.5 A g-1) | 87.1% (3000) | [ |
CQD/NiCo2O4 | Oil bath | 856 (1 A g-1) | 98.7% (10000) | [ |
CNT/NiCo2O4 | Electrochemical deposition | 695 (1 A g-1) | 91% (1500) | [ |
C/NiCo2O4 | Hydrothermal | 404 (1 A g-1) | 87.1% (1000) | [ |
NiCo2O4@Ni foam | Combustion | 646.6 (1 A g-1) | 96.5% (3000) | [ |
NiCo2O4-ECN | Hydrothermal | 596.8 (2 A g-1) | 97% (3100) | [ |
CMK-3/Co3O4 | Hydrothermal | 1131.3 (0.5 A g-1) | 91% (3000) | [ |
Co3O4-NiO/GO | Hydrothermal | 883 (1 A g-1) | 82% (3000) | [ |
MWCNT/GO/NiCo2O4 | Hydrothermal | 707 (2.5 A g-1) | 88% (5000) | [ |
Ni-Co-Mn hydroxide | Hydrothermal | 1188 (1 A g-1) | 78.8% (50000) | [ |
NiCo2O4@rGO | Hydrothermal | 1427 (8 A g-1) | 83.8% (10000) | [ |
Table 1 The electrochemical supercapacitor performance in previous studies.
Electrode materials | Synthesis method | Specific capacitance (F g-1) | Capacitance retention | Refs. |
---|---|---|---|---|
NiCo2O4/rGO | Ultrasonic spraying | 871 (1 A g-1) | 134% (30000) | This work |
Co3O4-NiO/GF | Immersion | 766 (1 A g-1) | 86% (5000) | [ |
NiCo2O4@MnO2 | Electrodepositing | 913.6 (0.5 A g-1) | 87.1% (3000) | [ |
CQD/NiCo2O4 | Oil bath | 856 (1 A g-1) | 98.7% (10000) | [ |
CNT/NiCo2O4 | Electrochemical deposition | 695 (1 A g-1) | 91% (1500) | [ |
C/NiCo2O4 | Hydrothermal | 404 (1 A g-1) | 87.1% (1000) | [ |
NiCo2O4@Ni foam | Combustion | 646.6 (1 A g-1) | 96.5% (3000) | [ |
NiCo2O4-ECN | Hydrothermal | 596.8 (2 A g-1) | 97% (3100) | [ |
CMK-3/Co3O4 | Hydrothermal | 1131.3 (0.5 A g-1) | 91% (3000) | [ |
Co3O4-NiO/GO | Hydrothermal | 883 (1 A g-1) | 82% (3000) | [ |
MWCNT/GO/NiCo2O4 | Hydrothermal | 707 (2.5 A g-1) | 88% (5000) | [ |
Ni-Co-Mn hydroxide | Hydrothermal | 1188 (1 A g-1) | 78.8% (50000) | [ |
NiCo2O4@rGO | Hydrothermal | 1427 (8 A g-1) | 83.8% (10000) | [ |
Fig. 7. Quantitative capacitive analysis for the NiCo2O4/rGO composite with feedstock ratio of 1:15: (a) CV curves at various scan rates; (b) b-values acquired from the linear fitting of the logarithm of anodic peak current vs logarithm of scan rates; (c) CV curve with the shaded area showing surface capacitive contribution at 20 mV s-1; (d) contribution fractions of surface capacitive and diffusion-controlled components at various scan rates.
Fig. 8. Electrochemical performance of the NiCo2O4/rGO//AC ASC device in 2 M KOH electrolyte: (a) CV curves of the individual AC and NiCo2O4/rGO electrode at a scan rate 20 mV s-1; (b) CV curves in different potential windows at a scan rate of 20 mV s-1; (c) CV curves at various scan rates; (d) GCD curves at different current densities; (e) Ragone plot; (f) long-term cycling stability at 20 A g-1, and the inset showing a red LED-lighted by two ASCs.
[1] |
S. Jadhav, R.S. Kalubarme, C. Terashima, B.B. Kale, V. Godbole, A. Fujishima, S.W. Gosavi, Electrochim. Acta. 299 (2019) 34-44.
DOI URL |
[2] |
H.N. Kwon, G.D. Park, Y.C. Kang, K.C. Roh, Carbon 144 (2019) 591-600.
DOI URL |
[3] |
X. Yu, S. Yun, J.S. Yeon, P. Bhattacharya, L. Wang, S.W. Lee, X. Hu, H.S. Park, Adv. Energy Mater. 8 (2018) 1702930.
DOI URL |
[4] |
J.H. Jeong, Y.H. Kim, K.C. Roh, K.B. Kim, Carbon 150 (2019) 128-135.
DOI |
[5] |
X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 7 (2011) 1876-1902.
DOI PMID |
[6] |
P. Nakhanivej, X. Yu, S.K. Park, S. Kim, J.Y. Hong, H.J. Kim, W. Lee, J.Y. Hwang, J.E. Yang, C. Wolverton, J. Kong, M. Chhowalla, H.S. Park, Nat. Mater. 18 (2019) 156-162.
DOI PMID |
[7] |
Z. Fan, Q. Zhao, T. Li, J. Yan, Y. Ren, J. Feng, T. Wei, Carbon 50 (2012) 1699-1703.
DOI URL |
[8] |
Q. Ke, J. Wang, J. Materiomics 2 (2016) 37-54.
DOI URL |
[9] | M. Stoller, S. Park, Y. Zhu, J. An, R. Ruoff, Nano Lett 8 (2008) 78712 -0292. |
[10] |
A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, J. Mater. Chem. A 5 (2017) 12653-12672.
DOI URL |
[11] |
B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian, C. Zhu, E.B. Duoss, C.M. Spadaccini, M.A. Worsley, Y. Li, Joule 3 (2019) 459-470.
DOI URL |
[12] |
Y. Yin, Y. Xu, Y. Zhou, Y. Yan, K. Zhan, J. Yang, J. Li, B. Zhao, ChemElectroChem 5 (2018) 1394-1400.
DOI URL |
[13] |
J. Cheng, B. Zhao, W. Zhang, F. Shi, G. Zheng, D. Zhang, J. Yang, Adv. Funct. Mater. 25 (2015) 7381-7391.
DOI URL |
[14] |
A. Kumar, D. Sarkar, S. Mukherjee, S. Patil, D.D. Sarma, A. Shukla, ACS Appl. Mater. Interfaces 10 (2018) 42484-42493.
DOI URL |
[15] |
X. Liu, B. You, X.Y. Yu, J. Chipman, Y. Sun, J. Mater. Chem. A 4 (2016) 11611-11615.
DOI URL |
[16] |
Z. Wang, X. Zhang, Z. Zhang, N. Qiao, Y. Li, Z. Hao, J. Colloid Interfaces Sci. 460 (2015) 303-309.
DOI URL |
[17] |
R. Boopathiraja, M. Parthibavarman, Electrochim. Acta 346 (2020) 136270.
DOI URL |
[18] |
M. Yu, J. Chen, J. Liu, S. Li, Y. Ma, J. Zhang, J. An, Electrochim. Acta 151 (2015) 99-108.
DOI URL |
[19] |
P. Osaimany, A.S. Samuel, Y. Johnbosco, Y.P. Kharwar, V. Chakravarthy, Compos. Part B-Eng. 176 (2019) 107327.
DOI URL |
[20] |
P. Sennu, V. Aravindan, Y.S. Lee, J. Power Sources 306 (2016) 248-257.
DOI URL |
[21] |
S. Sun, S. Wang, S. Li, Y. Li, Y. Zhang, J. Chen, Z. Zhang, S. Fang, P. Wang, J. Mater. Chem. A. 4 (2016) 18646-18653.
DOI URL |
[22] |
T.H. Ko, S. Radhakrishnan, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, J. Alloys Compd. 696 (2017) 193-200.
DOI URL |
[23] | D. Carriazo, J. Patiño, M.C. Gutiérrez, M.L. Ferrer, F. Del Monte, RSC Adv. 3 (2013) 13690-13695. |
[24] |
A.N. Naveen, S. Selladurai, Electrochim. Acta 173 (2015) 290-301.
DOI URL |
[25] |
M. Guo, S. Song, S. Zhang, Y. Yan, K. Zhan, J. Yang, B. Zhao, ACS Sustain. Chem. Eng. 8 (2020) 7436-7444.
DOI URL |
[26] |
Y. Luo, H. Zhang, D. Guo, J. Ma, Q. Li, L. Chen, T. Wang, Electrochim. Acta 132 (2014) 332-337.
DOI URL |
[27] |
W. Zhang, B. Zhao, Y. Yin, T. Yin, J. Cheng, K. Zhan, Y. Yan, J. Yang, J. Li, J. Mater. Chem. A 4 (2016) 19026-19036.
DOI URL |
[28] |
W.H. Low, P.S. Khiew, S.S. Lim, C.W. Siong, E.R. Ezeigwe, J. Alloys Compd. 775 (2019) 1324-1356.
DOI URL |
[29] |
C. Lee, E.H. Jo, S.K. Kim, J.H. Choi, H. Chang, H.D. Jang, Carbon 115 (2017) 331-337.
DOI URL |
[30] |
S. Al-Rubaye, R. Rajagopalan, S.X. Dou, Z. Cheng, J. Mater. Chem. A 5 (2017) 18989-18997.
DOI URL |
[31] | J. Liu, J. Zhang, D. Wang, D. Li, J. Ke, S. Wang, S. Liu, H. Xiao, R. Wang, ACS Sus- tain, Chem.Eng. 7 (2019) 12428-12438. |
[32] |
G. Zhou, C. Wu, Y. Wei, C. Li, Q. Lian, C. Cui, W. Wei, L. Chen, Electrochim. Acta 222 (2016) 1878-1886.
DOI URL |
[33] |
G.Q. Zhang, H.B. Wu, H.E. Hoster, M.B. Chan-Park, X.W. Lou, Energy Environ. Sci. 5 (2012) 9453-9456.
DOI URL |
[34] | Z. Xu, J. Ren, Q. Meng, X. Zhang, C. Du, J. Chen, ACS Sustain. Chem. Eng. 7 (2019) 12447-12456. |
[35] | P. Sennu, V. Aravindan, Y.S. Lee, J.Power Sources 306 (2016) 248-257. |
[36] |
P. Wang, H. Zhou, C. Meng, Z. Wang, K. Akhtar, A. Yuan, Chem. Eng. J. 369 (2019) 57-63.
DOI URL |
[37] |
Y. Zhang, B. Wang, F. Liu, J. Cheng, X.W. Zhang, L. Zhang, Nano Energy 27 (2016) 627-637.
DOI URL |
[38] |
Y. Zhu, Z. Wu, M. Jing, H. Hou, Y. Yang, Y. Zhang, X. Yang, W. Song, X. Jia, X. Ji, J. Mater. Chem. A 3 (2015) 866-877.
DOI URL |
[39] |
W.W. Liu, C. Lu, K. Liang, B.K. Tay, J. Mater. Chem. A 2 (2014) 5100-5107.
DOI URL |
[40] |
W. Li, F. Yang, Z. Hu, Y. Liu, J. Alloys Compd. 749 (2018) 305-312.
DOI URL |
[41] |
D.R. Kumar, K.R. Prakasha, A.S. Prakash, J.J. Shim, J. Alloys Compd. 836 (2020) 155370.
DOI URL |
[42] |
V. Veeramani, R. Madhu, S.M. Chen, M. Sivakumar, C.T. Hung, N. Miyamoto, S.B. Liu, Electrochim. Acta 247 (2017) 288-295.
DOI URL |
[43] | G. Zhang, Y. Chen, Y. Jiang, C. Lin, Y. Chen, H. Guo, Mater. Sci. Technol. 34 (2018) 1538-1543. |
[44] |
X. Yang, C. Xiang, Y. Zou, J. Liang, H. Zhang, E. Yan, F. Xu, X. Hu, Q. Cheng, L. Sun, J. Mater. Sci. Technol. 55 (2020) 223-230.
DOI URL |
[45] |
S. Ramesh, D. Vikraman, H.-S. Kim, H.S. Kim, J.H. Kim, J. Alloys Compd. 765 (2018) 369-379.
DOI URL |
[46] |
P. Sivakumar, M. Jana, M.G. Jung, A. Gedanken, H.S. Park, J. Mater. Chem. A 7 (2019) 11362-11369.
DOI URL |
[47] |
K.H. Oh, G.S. Gund, H.S. Park, J. Mater. Chem. A 6 (2018) 22106-22114.
DOI URL |
[48] |
J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 111 (2007) 14925-14931.
DOI URL |
[49] |
C. Ren, X. Jia, W. Zhang, D. Hou, Z. Xia, D. Huang, J. Hu, S. Chen, S. Gao, Adv. Funct. Mater. 30 (2020) 2004519.
DOI URL |
[50] |
X. Wang, W.S. Liu, X. Lu, P.S. Lee, J. Mater. Chem. 22 (2012) 23114-23119.
DOI URL |
[51] |
Y. Zhou, L. Wen, K. Zhan, Y. Yan, B. Zhao, Ceram. Int. 44 (2018) 21848-21854.
DOI URL |
[52] |
Y. Yuan, W. Wang, J. Yang, H. Tang, Z. Ye, Y. Zeng, J. Lu, Langmuir 33 (2017) 10446-10454.
DOI URL |
[53] |
F. Zhu, W. Liu, Y. Liu, W. Shi, Inorg. Chem. Front. 6 (2019) 982-987.
DOI URL |
[54] |
Z. Zhang, H. Zhang, X. Zhang, D. Yu, Y. Ji, Q. Sun, Y. Wang, X. Liu, J. Mater. Chem. A 4 (2016) 18578-18584.
DOI URL |
[1] | Chuanyin Xiong, Mengrui Li, Qing Han, Wei Zhao, Lei Dai, Yonghao Ni. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances [J]. J. Mater. Sci. Technol., 2022, 97(0): 190-200. |
[2] | Mohan Reddy Pallavolu, Arghya Narayan Banerjee, Ramesh Reddy Nallapureddy, Sang W. Joo. Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor [J]. J. Mater. Sci. Technol., 2022, 96(0): 332-344. |
[3] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors [J]. J. Mater. Sci. Technol., 2021, 81(0): 162-174. |
[4] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. NiCoLDH nanosheets grown on MOF-derived Co3O4 triangle nanosheet arrays for high-performance supercapacitor [J]. J. Mater. Sci. Technol., 2021, 62(0): 60-69. |
[5] | Liqianyun Xu, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Ahmed A. Al-Ghamdi, S. Wageh. Significant capacitance enhancement induced by cyclic voltammetry in pine needle-like Ni-Co-Cu multicomponent electrode [J]. J. Mater. Sci. Technol., 2021, 78(0): 100-109. |
[6] | Bing Zhang, Jiankang He, Gaofeng Zheng, Yuanyuan Huang, Chaohung Wang, Peisheng He, Fanping Sui, Lingchao Meng, Liwei Lin. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2021, 82(0): 135-143. |
[7] | Ali Aldalbahi, Edmund Samuel, Bander S. Alotaibi, Hany El-Hamshary, Sam S. Yoon. Reduced graphene oxide supersonically sprayed on wearable fabric and decorated with iron oxide for supercapacitor applications [J]. J. Mater. Sci. Technol., 2021, 82(0): 47-56. |
[8] | Xu Bao, Wei-Bin Zhang, Qiang Zhang, Lun Zhang, Xue-Jing Ma, Jianping Long. Interlayer material technology of manganese phosphate toward and beyond electrochemical pseudocapacitance over energy storage application [J]. J. Mater. Sci. Technol., 2021, 71(0): 109-128. |
[9] | Wenbin Zhang, Bei Liu, Mei Yang, Yijiang Liu, Huaming Li, Pingle Liu. Biowaste derived porous carbon sponge for high performance supercapacitors [J]. J. Mater. Sci. Technol., 2021, 95(0): 105-113. |
[10] | Pingping Yao, Chenyang Li, Jiali Yu, Shuo Zhang, Meng Zhang, Huichao Liu, Muwei Ji, Guangtao Cong, Tao Zhang, Caizhen Zhu, Jian Xu. High performance flexible energy storage device based on copper foam supported NiMoO4 nanosheets-CNTs-CuO nanowires composites with core-shell holey nanostructure [J]. J. Mater. Sci. Technol., 2021, 85(0): 87-94. |
[11] | Dinesh J. Ahirrao, Ajay Kumar Pal, Vikalp Singh, Neetu Jha. Nanostructured porous polyaniline (PANI) coated carbon cloth (CC) as electrodes for flexible supercapacitor device [J]. J. Mater. Sci. Technol., 2021, 88(0): 168-182. |
[12] | Guoxiang Pan, Feng Cao, Yujian Zhang, Xinhui Xia. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 144-151. |
[13] | Han Wu, Jingdong Guo, De’an Yang. Facile autoreduction synthesis of core-shell Bi-Bi2O3/CNT with 3-dimensional neural network structure for high-rate performance supercapacitor [J]. J. Mater. Sci. Technol., 2020, 47(0): 169-176. |
[14] | Juan Du, Aibing Chen, Yue Zhang, Shuang Zong, Haixia Wu, Lei Liu. PVP-assisted preparation of nitrogen doped mesoporous carbon materials for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 197-204. |
[15] | Jing Liang, Cuili Xiang, Yongjin Zou, Xuebu Hu, Hailiang Chu, Shujun Qiu, Fen Xu, Lixian Sun. Spacing graphene and Ni-Co layered double hydroxides with polypyrrole for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 190-197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||