J. Mater. Sci. Technol. ›› 2021, Vol. 85: 87-94.DOI: 10.1016/j.jmst.2020.11.076
• Research Article • Previous Articles Next Articles
Pingping Yaoa,1, Chenyang Lia,1, Jiali Yua,*(), Shuo Zhanga, Meng Zhanga, Huichao Liua, Muwei Jia, Guangtao Conga, Tao Zhangb,c, Caizhen Zhua,*(
), Jian Xua
Received:
2020-09-02
Revised:
2020-10-22
Accepted:
2020-11-11
Published:
2021-09-20
Online:
2021-01-29
Contact:
Jiali Yu,Caizhen Zhu
About author:
czzhu@szu.edu.cn (C. Zhu).1These authors contributed equally to this work.
Pingping Yao, Chenyang Li, Jiali Yu, Shuo Zhang, Meng Zhang, Huichao Liu, Muwei Ji, Guangtao Cong, Tao Zhang, Caizhen Zhu, Jian Xu. High performance flexible energy storage device based on copper foam supported NiMoO4 nanosheets-CNTs-CuO nanowires composites with core-shell holey nanostructure[J]. J. Mater. Sci. Technol., 2021, 85: 87-94.
Fig. 2. (a, b) SEM images of Cu(OH)2 NWAs at low and high magnifications; the inset shows the SEM image of the pristine Cu foam. (c) SEM image of CNTs-Cu(OH)2 NWAs. (d, e, f) SEM images of NiMoO4 NSs-CNTs-CuO NWAs at different magnifications. (g) EDX mappings of NiMoO4 NSs-CNTs-CuO nanowire.
Fig. 3. (a, b) TEM images of NiMoO4 NSs-CNTs-CuO nanowire at low and high magnifications. (c) EDX mappings of NiMoO4 NSs-CNTs-CuO nanowire. (d, e) HR-TEM images of NiMoO4 nanosheet at low and high magnifications.
Fig. 4. (a) XRD patterns of different samples. High resolution XPS spectra of (b) Cu 2p, (c) Ni 2p, (d) Mo 3d, (e) O 1s and (f) C 1s for NiMoO4 NSs-CNTs-CuO NWAs/Cu foam electrode.
Fig. 6. (a) CV curves of different samples at the scan rate of 20 mV s-1. (b) GCD curves of different samples at the current density of 40 mA cm-2. (c) CV curves of NiMoO4 NSs-CNTs-CuO NWAs/Cu foam electrode at different scan rates. (d) Specific capacitances of NiMoO4 NSs-CNTs-CuO NWAs/Cu foam electrode at different current densities.
Fig. 7. (a) Schematic diagram of the asymmetric supercapacitor structure. (b) CV curves of NiMoO4 NSs-CNTs-CuO NWAs/Cu foam and carbon cloth. (c) CV curves of the supercapacitor at different potentials at the scan rate of 50 mV s-1. (d) Relationship of the specific areal capacitance with different voltages. (e) CV curves of the supercapacitor at various scan rates. (f) GCD curves of the device obtained at different current densities. (g) Specific areal and volume capacitances at different scan rates. (h) Log (peak current) versus log (scan rate) based on the CV curves.
Fig. 8. (a) Digital image of the NiMoO4 NSs-CNTs-CuO NWAs/Cu foam flexible electrode at different bending angles. (b) CV curves comparison of the flexible device at different bending angles. (c) Capacitance retention of the flexible supercapacitor with bending different cycles at 90° bending angle. (d) Ragone plot of the as-assembled supercapacitor compared with previously reported work. (e) Capacitance retention during 10,000 cycles. (f) Digital image of a red LED display panel powered by three devices connected in series.
[1] |
L.D. Shi, D.Z. Li, J.L. Yu, H.C. Liu, Y. Zhao, H.L. Xin, Y.M. Lin, C.D. Lin, C.H. Li, C.Z. Zhu, J. Mater. Chem. A 6 (2018) 7967-7976.
DOI URL |
[2] |
A. Roy, A. Ray, S. Saha, M. Ghosh, T. Das, B. Satpati, M. Nandi, S. Das, Electrochim. Acta 283 (2018) 327-337.
DOI URL |
[3] |
I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Renew. Sustain. Energy Rev. 13 (2019) 1513-1522.
DOI URL |
[4] |
Z.H. Pan, J. Yang, Q.C. Zhang, M.N. Liu, Y.T. Hu, Z.K. Kou, N. Liu, X. Yang, X.Y. Ding, H. Chen, J. Li, K. Zhang, Y.C. Qiu, Q.W. Li, J. Wang, Y.G. Zhang, Adv. Energy Mater. 9 (2019), 1802753.
DOI URL |
[5] |
Z.H. Pan, Y.C. Qiu, J. Yang, F.M. Ye, Y.J. Xu, X.Y. Zhang, M.N. Liu, Y.G. Zhang, Nano Energy 26 (2016) 610-619.
DOI URL |
[6] |
D. Choi, G.E. Blomgren, P.N. Kumta, Adv. Mater. 18 (2006) 1178-1182.
DOI URL |
[7] |
H. Nishide, K. Oyaizu, Science 319 (2008) 737-738.
DOI URL |
[8] |
J.C. Zhang, K.S. Xiao, T.C. Zhang, G. Qian, Y. Wang, Y. Feng, Electrochim. Acta 226 (2017) 113-120.
DOI URL |
[9] |
Y.Q. Guo, X.F. Hong, Y. Wang, Q. Li, Adv. Funct. Mater. 29 (2019), 1809004.
DOI URL |
[10] |
J.L. Yu, W.B. Lu, S.P. Pei, K. Gong, L.Y. Wang, L.H. Meng, Y.D. Huang, J.P. Smith, K.S. Booksh, Q.W. Li, J.H. Byun, Y. Oh, Y.S. Yan, T.W. Chou, ACS Nano 10 (2016) 5204-5211.
DOI URL |
[11] |
G. Wang, S. Oswald, M. Löffler, K. Mullen, X.L. Feng, Adv. Mater. 31 (2019), 1807712.
DOI URL |
[12] |
C.Z. Yuan, L. Yang, L.R. Hou, L.F. Shen, X.G. Zhang, X.W. Lou, Energy Environ. Sci. 5 (2012) 7883-7887.
DOI URL |
[13] |
S.M. Chen, G. Yang, Y. Jia, H.J. Zheng, J. Mater. Chem. A 5 (2017) 1028-1034.
DOI URL |
[14] |
G.J. Wei, X.R. Xu, J.X. Liu, K. Du, J. Du, S. Zhang, C.H. An, J. Zhang, Z.J. Wang, Mater. Lett. 186 (2017) 131-134.
DOI URL |
[15] |
L.N. Ma, R. Liu, L. Liu, F. Wang, H.J. Niu, Y.D. Huang, J. Power Sources 335 (2016) 76-83.
DOI URL |
[16] |
Z.H. Huang, F.F. Sun, M. Batmunkh, W.H. Li, J. Mater. Chem. A 7 (2019) 11826-11835.
DOI URL |
[17] |
C.Z. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Angew. Chem. Int. Ed. 53 (2014) 1488-1504.
DOI URL |
[18] |
D.P. Cai, D.D. Wang, B. Liu, Y.R. Wang, Y. Liu, L.L. Wang, H. Li, H. Huang, Q.H. Li, T.H. Wang, ACS Appl. Mater. Interfaces 5 (2013) 12905-12910.
DOI URL |
[19] |
D. Guo, Y.Z. Luo, X.Z. Yu, Q.H. Li, T.H. Wang, Nano Energy 8 (2014) 174-182.
DOI URL |
[20] |
S.J. Peng, L.L. Li, H.B. Wu, S. Madhavi, X.W. Lou, Adv. Energy Mater. 5 (2015), 1401172.
DOI URL |
[21] |
S.J. He, W. Chen, J. Power Sources 294 (2015) 150-158.
DOI URL |
[22] |
S.J. Peng, L.L. Li, C.C. Li, H.T. Tan, R. Cai, H. Yu, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q.Y. Yan, Chem. Commun. 49 (2013) 10178-10180.
DOI URL |
[23] |
F.Y. Ning, M.F. Shao, C.L. Zhang, S.M. Xu, M. Wei, X. Duan, Nano Energy 7 (2014) 134-142.
DOI URL |
[24] |
B. Liu, B.Y. Liu, Q.F. Wang, X.F. Wang, Q.Y. Xiang, D. Chen, G.Z. Shen, ACS Appl. Mater. Interfaces 5 (2013) 10011-10017.
DOI URL |
[25] |
J.W. Xiao, L. Wan, S.H. Yang, F. Xiao, S. Wang, Nano Lett. 14 (2014) 831-838.
DOI URL |
[26] |
X.Y. Liu, S.J. Shi, Q.Q. Xiong, L. Li, Y.J. Zhang, H. Tang, C.D. Gu, X.L. Wang, J.P. Tu, ACS Appl. Mater. Interfaces 5 (2013) 8790-8795.
DOI URL |
[27] |
C. Guan, X.L. Li, Z.L. Wang, X.H. Cao, C. Soci, H. Zhang, H.J. Fan, Adv. Mater. 24 (2012) 4186-4190.
DOI URL |
[28] |
Y.P. Huang, Y.E. Miao, H.Y. Lu, T.X. Liu, Chem. Eur. J. 21 (2015) 10100-10108.
DOI URL |
[29] |
L. Yu, G.Q. Zhang, C.Z. Yuan, X.W. Lou, Chem. Commun. 49 (2013) 137-139.
DOI URL |
[30] |
W.J. Zhou, X.H. Cao, Z.Y. Zeng, W.H. Shi, Y.Y. Zhu, Q.Y. Yan, H. Liu, J.Y. Wang, H. Zhang, Energy Environ. Sci. 6 (2013) 2216-2221.
DOI URL |
[31] |
L.Y. Niu, Y.D. Wang, F.P. Ruan, C. Shen, S. Shan, M. Xu, Z.K. Sun, C. Li, X.J. Liu, Y.Y. Gong, J. Mater. Chem. A 4 (2016) 5669-5677.
DOI URL |
[32] |
S. Houssenbay, S. Kasztelan, H. Toulhoat, J.P. Bonnelle, J. Grimblot, J. Chem. Phys. 93 (1989) 7176-7180.
DOI URL |
[33] |
Y.G. Yao, J. Sun, Q.C. Zhang, X.N. Wang, J.X. Zhao, J.B. Guo, J. Zhang, Z.Y. Zhou, P. Man, J. Sun, Q.W. Li, J. Mater. Chem. A 5 (2017) 21153-21160.
DOI URL |
[34] |
W.B. Lu, M. Zu, J.H. Byun, B.S. Kim, T.W. Chou, Adv. Mater. 24 (2012) 1805-1833.
DOI URL |
[35] |
G. Nagaraju, S.C. Sekhar, J.S. Yu, Adv. Energy Mater. 8 (2017), 1702201.
DOI URL |
[36] |
P.R. Jothi, S. Kannan, G. Velayutham, J. Power Sources 277 (2015) 350-359.
DOI URL |
[37] |
M.M. Yao, Z.H. Hu, Y.F. Liu, P.P. Liu, New J. Chem. 39 (2015) 8430-8438.
DOI URL |
[38] |
D. Chen, M.J. Lu, L. Li, D. Cai, J.Z. Li, J.M. Cao, W. Han, J. Mater. Chem. A 7 (2019) 21759-21765.
DOI |
[39] |
D.P. Zhao, H.Q. Liu, X. Wu, Nano Energy 57 (2019) 363-370.
DOI URL |
[40] |
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruna, P. Simon, B. Dunn, Nat. Mater. 12 (2013) 518-522.
DOI URL |
[41] |
H.L. Yang, H.H. Xu, M. Li, L. Zhang, Y.H. Huang, X.L. Hu, ACS Appl. Mater. Interfaces 8 (2016) 1774-1779.
DOI URL |
[42] |
X.L. Cheng, J. Zhang, J. Ren, N. Liu, P.N. Chen, Y. Zhang, J. Deng, Y.G. Wang, H.S. Peng, J. Phys. Chem. C 120 (2016) 9685-9691.
DOI URL |
[43] |
B. Liu, D.Z. Kong, Z.X. Huang, R.W. Mo, Y. Wang, Z.J. Han, C.W. Cheng, H.Y. Yang, Nanoscale 8 (2016) 10686-10694.
DOI PMID |
[44] |
Q.H. Meng, H.P. Wu, Y.N. Meng, K. Xie, Z.X. Wei, Z.X. Guo, Adv. Mater. 26 (2014) 4100-4106.
DOI URL |
[45] |
X.C. Shao, X.Y. Zheng, W.R. Zou, Y.L. Luo, Q.C. Cen, Q.L. Ye, X.T. Xu, F. Wang, Electrochim. Acta 248 (2019) 322-332.
DOI URL |
[1] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors [J]. J. Mater. Sci. Technol., 2021, 81(0): 162-174. |
[2] | Xu Bao, Wei-Bin Zhang, Qiang Zhang, Lun Zhang, Xue-Jing Ma, Jianping Long. Interlayer material technology of manganese phosphate toward and beyond electrochemical pseudocapacitance over energy storage application [J]. J. Mater. Sci. Technol., 2021, 71(0): 109-128. |
[3] | Liqianyun Xu, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Ahmed A. Al-Ghamdi, S. Wageh. Significant capacitance enhancement induced by cyclic voltammetry in pine needle-like Ni-Co-Cu multicomponent electrode [J]. J. Mater. Sci. Technol., 2021, 78(0): 100-109. |
[4] | Bing Zhang, Jiankang He, Gaofeng Zheng, Yuanyuan Huang, Chaohung Wang, Peisheng He, Fanping Sui, Lingchao Meng, Liwei Lin. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2021, 82(0): 135-143. |
[5] | Ali Aldalbahi, Edmund Samuel, Bander S. Alotaibi, Hany El-Hamshary, Sam S. Yoon. Reduced graphene oxide supersonically sprayed on wearable fabric and decorated with iron oxide for supercapacitor applications [J]. J. Mater. Sci. Technol., 2021, 82(0): 47-56. |
[6] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. NiCoLDH nanosheets grown on MOF-derived Co3O4 triangle nanosheet arrays for high-performance supercapacitor [J]. J. Mater. Sci. Technol., 2021, 62(0): 60-69. |
[7] | Guoxiang Pan, Feng Cao, Yujian Zhang, Xinhui Xia. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 144-151. |
[8] | Licheng Zhao, Ping Zhang, Yanan Zhang, Zhi Zhang, Lei Yang, Zhi-Gang Chen. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 54(0): 69-76. |
[9] | Juan Du, Aibing Chen, Yue Zhang, Shuang Zong, Haixia Wu, Lei Liu. PVP-assisted preparation of nitrogen doped mesoporous carbon materials for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 197-204. |
[10] | Tao Liu, Jiahao Liu, Liuyang Zhang, Bei Cheng, Jiaguo Yu. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor [J]. J. Mater. Sci. Technol., 2020, 47(0): 113-121. |
[11] | Xueying Yang, Cuili Xiang, Yongjin Zou, Jing Liang, Huanzhi Zhang, Erhu Yan, Fen Xu, Xuebu Hu, Qiong Cheng, Lixian Sun. Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 223-230. |
[12] | Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application [J]. J. Mater. Sci. Technol., 2020, 40(0): 196-203. |
[13] | Yin Liu, Cuili Xiang, Hailiang Chu, Shujun Qiu, Jennifer McLeod, Zhe She, Fen Xu, Lixian Sun, Yongjin Zou. Binary Co-Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 37(0): 135-142. |
[14] | Jin Kyu Kim, Chang Soo Lee, Jae Hun Lee, Jung Tae Park, Jong Hak Kim. Ni, Co-double hydroxide wire structures with controllable voids for electrodes of energy-storage devices [J]. J. Mater. Sci. Technol., 2020, 55(0): 126-135. |
[15] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||