J. Mater. Sci. Technol. ›› 2021, Vol. 95: 105-113.DOI: 10.1016/j.jmst.2021.03.066
• Research Article • Previous Articles Next Articles
Wenbin Zhanga, Bei Liua, Mei Yanga,d,**(), Yijiang Liua, Huaming Lia,b, Pingle Liuc,*(
)
Received:
2020-11-30
Revised:
2021-03-24
Accepted:
2021-03-25
Published:
2021-12-30
Online:
2021-05-25
Contact:
Mei Yang,Pingle Liu
About author:
* E-mail addresses: liupingle@xtu.edu.cn (P. Liu).Wenbin Zhang, Bei Liu, Mei Yang, Yijiang Liu, Huaming Li, Pingle Liu. Biowaste derived porous carbon sponge for high performance supercapacitors[J]. J. Mater. Sci. Technol., 2021, 95: 105-113.
Fig. 1. Schematic illustration for preparing SPHA-x and SPHA-ac-700-x (top). (a-c) The compression-recovery process of SPHA-700, the recorded deformation developed by compression for 100 cycles at strain = 50% (inset of (c)), (d, e) SEM images of the interior microstructures of SPHA-700 corresponding to the compression-recovery process, respectively, (f) digital photograph of a piece of SPHA-700 standing on the slender pubescence of Setaria viridis, showing the ultralight performance.
Samples | BET | XPS | Csd (F g-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SSA (m2 g-1) | Pore volume (cm3 g-1) | Elemental content (at.%) | O configuration (%) | N configuration (%) | ||||||||
C | N | O | C = O | C-O | C-OH | P-Na | G-Nb | N-Oc | ||||
SPHA-700 | 794.2 | 0.51 | 86.7 | 4.5 | 8.8 | 34.7 | 36.3 | 29.0 | 23.6 | 48.4 | 28.0 | 303.8 |
SPHA-ac-700-2 | 1900.2 | 1.15 | 86.1 | 3.3 | 10.6 | 39.1 | 40.1 | 20.8 | 15.6 | 53.9 | 30.5 | 403.6 |
Table 1 Compositional analyses, textural and electrochemical properties of SPHA-700 and SPHA-ac-700-2.
Samples | BET | XPS | Csd (F g-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SSA (m2 g-1) | Pore volume (cm3 g-1) | Elemental content (at.%) | O configuration (%) | N configuration (%) | ||||||||
C | N | O | C = O | C-O | C-OH | P-Na | G-Nb | N-Oc | ||||
SPHA-700 | 794.2 | 0.51 | 86.7 | 4.5 | 8.8 | 34.7 | 36.3 | 29.0 | 23.6 | 48.4 | 28.0 | 303.8 |
SPHA-ac-700-2 | 1900.2 | 1.15 | 86.1 | 3.3 | 10.6 | 39.1 | 40.1 | 20.8 | 15.6 | 53.9 | 30.5 | 403.6 |
Fig. 3. Structural and composition characterizations: (a) XRD patterns and (b) Raman spectra of SPHA-x and SPHA-ac-700-x, (c) high-resolution O 1 s spectra and (d) N 1 s spectra of SPHA-700 and SPHA-ac-700-2, (e) N2 adsorption-desorption isotherms and (f) the pore size distributions of SPHA-x and SPHA-ac-700-x.
Fig. 4. The capacitance performances of SPHA-x in 6.0 M KOH electrolyte at three-electrode system: (a) CV profiles tested at 5 mV s-1 and 200 mV s-1, (b) GCD profiles tested at 0.5 A g-1 and 20 A g-1, (c) the correlations of Cs value with current loadings for SPHA-600, SPHA-700 and SPHA-800 electrodes. The capacitance performances of solid-state SPHA-700//SPHA-700 supercapacitor: (d) schematic illustration for the construction of solid-state SPHA-700//SPHA-700 supercapacitor, (e) CV curves tested at different scan rates, (f) GCD curves tested at different current densities, (g) Nyquist plot, (h) GCD curves tested at different bending angles, (i) digital photographs of solid-state SPHA-700//SPHA-700 supercapacitor at different bending angles.
Fig. 5. Electrochemical properties of SPHA-ac-700-2 in three-electrode system: (a) CV curves tested at the scan rates of 5-500 mV s-1, (b) GCD curves tested at the current densities of 0.5-60 A g-1, (c) specific capacitances at different current densities, (d) Nyquist plot.
Fig. 6. Electrochemical characterizations of SPHA-ac-700-2//SPHA-ac-700-2 supercapacitor: (a, b) CV profiles at various scan rates, (c) GCD profiles at various current densities in 6.0 M KOH electrolyte, (d) cycling performances (inset: Ragone plot and photograph of a LED powered by SPHA-ac-700-2//SPHA-ac-700-2 supercapacitor) in 6 M KOH electrolytes, (e) GCD profiles at different operating voltages, (f) Ragone plot in 1.0 M Na2SO4.
[1] | Z. Gao, C. Bumgardner, N. Song, Y. Zhang, J. Li, X. Li, Nat. Commun. 7 (2016) 1-12. |
[2] |
X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Science 341 (2013) 534-537.
DOI URL |
[3] |
X. Fan, C. Yu, J. Yang, Z. Ling, C. Hu, M. Zhang, J. Qiu, Adv. Energy Mater. 5 (2015) 1401761.
DOI URL |
[4] |
Y. Li, D. Zhang, Y. Zhang, J. He, Y. Wang, K. Wang, Y. Xu, H. Li, Y. Wang, J. Power Sour. 448 (2020) 227396.
DOI URL |
[5] |
Y. Liu, Z. Xiao, Y. Liu, L.Z. Fan, J. Mater. Chem. A 6 (2018) 160-166.
DOI URL |
[6] |
R.K. Gupta, M. Dubey, P. Kharel, Z. Gu, Q.H. Fan, J. Power Sour. 274 (2015) 1300-1305.
DOI URL |
[7] |
W. Tang, Y. Zhang, Y. Zhong, T. Shen, X. Wang, X. Xia, J. Tu, Mater. Res. Bull. 88 (2017) 234-241.
DOI URL |
[8] |
C. Li, G. Shi, Nanoscale 4 (2012) 5549-5563.
DOI URL |
[9] |
M.T. Pettes, H. Ji, R.S. Ruoff, L. Shi, Nano Lett. 12 (2012) 2959-2964.
DOI URL |
[10] |
L.F. Chen, Y. Feng, H.W. Liang, Z.Y. Wu, S.H. Yu, Adv. Energy Mater. 7 (2017) 1700826.
DOI URL |
[11] |
M. Liu, K. Zhang, M. Si, H. Wang, L. Chai, Y. Shi, Carbon NY. 153 (2019) 707-716.
DOI URL |
[12] |
R. Zhang, X. Jing, Y. Chu, L. Wang, W. Kang, D. Wei, H. Li, S. Xiong, J. Mater. Chem. A 6 (2018) 17730-17739.
DOI URL |
[13] |
P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C.P. Wong, A. Umar, Nanoscale 6 (2014) 12120-12129.
DOI URL |
[14] |
S. Dutta, A. Bhaumik, K.C.W. Wu, Energy Environ. Sci. 7 (2014) 3574-3592.
DOI URL |
[15] |
R. Fang, K. Chen, L. Yin, Z. Sun, F. Li, H.M. Cheng, Adv. Mater. 31 (2019) 1800863.
DOI URL |
[16] |
F.F. Gong, H. Li, W. Wang, J. Huang, D.D. Xia, J. Liao, M. Wu, D.V. Papavassiliou, Nano Energy 58 (2019) 322-330.
DOI URL |
[17] |
D. Jiang, C. Li, W. Yang, J. Zhang, J. Liu, J. Mater. Chem. A 5 (2017) 18684-18690.
DOI URL |
[18] |
D.D. Nguyen, N.H. Tai, S.B. Lee, W.S. Kuo, Energy Environ. Sci. 5 (2012) 7908-7912.
DOI URL |
[19] |
T. Horikawa, J.I. Hayashi, K. Muroyama, Carbon NY. 42 (2004) 1625-1633.
DOI URL |
[20] |
S. Chen, G. He, H. Hu, S. Jin, Y. Zhou, Y. He, S. He, F. Zhao, H. Hou, Energy Environ. Sci. 6 (2013) 2435-2439.
DOI URL |
[21] | R. Fu, B. Zheng, J. Liu, M.S. Dresselhaus, G. Dresselhaus, J.H. Satcher, T.F. Bau-mann, Adv.Funct. Mater. 13 (2003) 558-562. |
[22] |
H. Bi, Z. Yin, X. Cao, X. Xie, C. Tan, X. Huang, B. Chen, F. Chen, Q. Yang, X. Bu, Adv. Mater. 25 (2013) 5916-5921.
DOI URL |
[23] |
Z.Y. Wu, C. Li, H.W. Liang, J.F. Chen, S.H. Yu, Angew. Chem. 125 (2013) 2997-3001.
DOI URL |
[24] |
B. Wang, R. Karthikeyan, X.Y. Lu, J. Xuan, M.K. Leung, Ind. Eng. Chem. Res. 52 (2013) 18251-18261.
DOI URL |
[25] |
Y.Q. Li, Y.A. Samad, K. Polychronopoulou, S.M. Alhassan, K. Liao, ACS Sustain. Chem. Eng. 2 (2014) 1492-1497.
DOI URL |
[26] |
S. Huang, J. Shi, Ind. Eng. Chem. Res. 53 (2014) 4888-4893.
DOI URL |
[27] |
Y. Myung, S. Jung, T.T. Tung, K.M. Tripathi, T. Kim, ACS Sustain. Chem. Eng. 7 (2019) 3772-3782.
DOI URL |
[28] |
D. Yuan, T. Zhang, Q. Guo, F. Qiu, D. Yang, Z. Ou, Chem. Eng. J. 351 (2018) 622-630.
DOI URL |
[29] |
F. Zhang, T. Liu, M. Li, M. Yu, Y. Luo, Y. Tong, Y. Li, Nano Lett. 17 (2017) 3097-3104.
DOI PMID |
[30] |
Ö. Teoman, M. Kaymak, J. Peasant. Stud. 35 (2008) 314-334.
DOI URL |
[31] |
M. Fang, Z. Wang, X. Chen, S. Guan, Appl. Surf. Sci. 436 (2018) 345-353.
DOI URL |
[32] |
X. Kang, A. Kirui, M.C. Dickwella Widanage, F. Mentink-Vigier, D.J. Cosgrove, T. Wang, Nat. Commun. 10 (2019) 1-9.
DOI URL |
[33] |
H. He, T. Sekine, T. Kobayashi, Appl. Phys. Lett. 81 (2002) 610-612.
DOI URL |
[34] |
Y. Cai, Y. Luo, H. Dong, X. Zhao, Y. Xiao, Y. Liang, M. Zheng, J. Power Sour. 353 (2017) 260-269.
DOI URL |
[35] |
J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D. Mitlin, Energy Environ. Sci. 8 (2015) 941-955.
DOI URL |
[36] |
Z. Yang, M. Xiang, W. Zhu, J. Hui, H. Qin, ACS Sustain. Chem. Eng. 8 (2020) 6675-6681.
DOI URL |
[37] |
Y. Wei, Y. Wang, X. Zhang, B. Wang, Q. Wang, N. Wu, Y. Zhang, H. Wu, ACS Appl. Mater. Interfaces 12 (2020) 35058-35070.
DOI URL |
[38] |
W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang, H. Zhang, J. Mater. Chem. A 3 (2015) 5656-5664.
DOI URL |
[39] |
T. Qin, H. Chen, Y. Zhang, X. Chen, L. Liu, D. Yan, S. Ma, J. Hou, F. Yu, S. Peng, J. Power Sour. 431 (2019) 232-238.
DOI URL |
[40] |
M. Sevilla, A.B. Fuertes, ACS Nano 8 (2014) 5069-5078.
DOI PMID |
[41] |
B. Liu, M. Yang, D. Yang, H. Chen, H. Li, J. Power Sour. 456 (2020) 227999.
DOI URL |
[42] |
F. Wu, J. Gao, X. Zha, M. Xie, Y. Sun, H. Kang, Q. Tian, H. Qiu, Carbon NY. 147 (2019) 242-251.
DOI URL |
[43] |
Y. Zhao, W. Ran, J. He, Y. Song, C. Zhang, D.B. Xiong, F. Gao, J. Wu, Y. Xia, ACS Appl. Mater. Interfaces 7 (2015) 1132-1139.
DOI URL |
[44] |
R. Silva, D. Voiry, M. Chhowalla, T. Asefa, J. Am. Chem. Soc. 135 (2013) 7823-7826.
DOI URL |
[45] |
S.S. Zhang, Inorg. Chem. Front. 2 (2015) 1059-1069.
DOI URL |
[46] |
M. Sevilla, R. Mokaya, Energy Environ. Sci. 7 (2014) 1250-1280.
DOI URL |
[47] |
H. Xu, L. Zhao, X. Liu, Q. Huang, Y. Wang, C. Hou, Y. Hou, J. Wang, F. Dang, J. Zhang, Adv. Funct. Mater. 30 (2020) 2006188.
DOI URL |
[48] |
H.P. Lin, S.T. Wong, C.Y. Mou, C.Y. Tang, J. Phys. Chem. B 104 (2000) 8967-8975.
DOI URL |
[49] |
H.P. Lin, C.Y. Mou, Acc. Chem. Res. 35 (2002) 927-935.
DOI URL |
[50] |
W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Energy Environ. Sci. 7 (2014) 379-386.
DOI URL |
[51] |
M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanoscale 5 (2013) 72-88.
DOI URL |
[52] |
Y. Lu, S. Zeng, L. Zhou, X. Huang, Y. Zeng, D. Zheng, W. Xu, X. Lu, Part. Part. Syst. Charact. 36 (2019) 1900115.
DOI URL |
[53] |
M. Yu, D. Lin, H. Feng, Y. Zeng, Y. Tong, X. Lu, Angew. Chem. Int. Ed. 56 (2017) 5454-5459.
DOI URL |
[54] |
S. Zeng, X. Shi, D. Zheng, C. Yao, F. Wang, W. Xu, X. Lu, Mater. Res. Bull. 135 (2021) 111134.
DOI URL |
[55] |
J. Cherusseri, K.S. Kumar, D. Pandey, E. Barrios, J. Thomas, Small 15 (2019) 1902606.
DOI PMID |
[56] |
L. Wang, X. Lu, S. Lei, Y. Song, J. Mater. Chem. A 2 (2014) 4491.
DOI URL |
[57] |
H. Abe, T. Tanimoto, M. Nakayama, J. Electrochem. Soc. 162 (2015) A1952.
DOI URL |
[58] |
K. Fic, G. Lota, M. Meller, E. Frackowiak, Energy Environ. Sci. 5 (2012) 5842-5850.
DOI URL |
[59] |
Y.H. Lee, Y.F. Lee, K.H. Chang, C.C. Hu, Electrochem. Commun. 13 (2011) 50-53.
DOI URL |
[60] |
J. Luo, H.D. Jang, J. Huang, ACS Nano 7 (2013) 1464-1471.
DOI URL |
[1] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors [J]. J. Mater. Sci. Technol., 2021, 81(0): 162-174. |
[2] | Chang Feng, Zhuoyuan Chen, Jing Tian, Jiangping Jing, Li Ma, Jian Hou. Fabrication of three-dimensional WO3/ZnWO4/ZnO multiphase heterojunction system with electron storage capability for significantly enhanced photoinduced cathodic protection performance [J]. J. Mater. Sci. Technol., 2021, 90(0): 183-193. |
[3] | Fengyuan Wang, Ping Xu, Ning Shi, Liru Cui, Yahui Wang, Dawei Liu, Honghong Zhao, Xijiang Han, Yunchen Du. Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution [J]. J. Mater. Sci. Technol., 2021, 93(0): 7-16. |
[4] | Jiachen Zhang, Lin Liu, Taiwen Huang, Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J. Mater. Sci. Technol., 2021, 62(0): 1-10. |
[5] | Hui Wang, Jiaqiang Liu, Chengtao Wang, Steve Guofang Shen, Xudong Wang, Kaili Lin. The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration [J]. J. Mater. Sci. Technol., 2021, 63(0): 18-26. |
[6] | Bing Zhang, Jiankang He, Gaofeng Zheng, Yuanyuan Huang, Chaohung Wang, Peisheng He, Fanping Sui, Lingchao Meng, Liwei Lin. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2021, 82(0): 135-143. |
[7] | Liang Wu, Yugang Li, Xianfeng Li, Naiheng Ma, Haowei Wang. Interactions between cadmium and multiple precipitates in an Al-Li-Cu alloy: Improving aging kinetics and precipitation hardening [J]. J. Mater. Sci. Technol., 2020, 46(0): 44-49. |
[8] | Guoxiang Pan, Feng Cao, Yujian Zhang, Xinhui Xia. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 144-151. |
[9] | Qiang Lu, Kai Li, Haonan Chen, Mingjun Yang, Xinyue Lan, Tong Yang, Shuhong Liu, Min Song, Lingfei Cao, Yong Du. Simultaneously enhanced strength and ductility of 6xxx Al alloys via manipulating meso-scale and nano-scale structures guided with phase equilibrium [J]. J. Mater. Sci. Technol., 2020, 41(0): 139-148. |
[10] | Licheng Zhao, Ping Zhang, Yanan Zhang, Zhi Zhang, Lei Yang, Zhi-Gang Chen. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 54(0): 69-76. |
[11] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. |
[12] | Majid Jafari, Chan-Woo Bang, Jong-Chan Han, Kyeong-Min Kim, Seon-Hyeong Na, Chan-Gyung Park, Byeong-Joo Lee. Evolution of microstructure and tensile properties of cold-drawn hyper-eutectoid steel wires during post-deformation annealing [J]. J. Mater. Sci. Technol., 2020, 41(0): 1-11. |
[13] | Sansan Shuai, Xin Lin, Yuanhao Dong, Long Hou, Hanlin Liao, Jiang Wang, Zhongming Ren. Three dimensional dendritic morphology and orientation transition induced by high static magnetic field in directionally solidified Al-10 wt.%Zn alloy [J]. J. Mater. Sci. Technol., 2019, 35(8): 1587-1592. |
[14] | Lu Liu, Xi Hu, Hong-Yan Zeng, Mo-Yu Yi, Shi-Gen Shen, Sheng Xu, Xi Cao, Jin-Ze Du. Preparation of NiCoFe-hydroxide/polyaniline composite for enhanced-performance supercapacitors [J]. J. Mater. Sci. Technol., 2019, 35(8): 1691-1699. |
[15] | Jinkai Zhang, Wenhui Zhou, Hui Wang, Kaili Lin, Fengshan Chen. 3D-printed surface promoting osteogenic differentiation and angiogenetic factor expression of BMSCs on Ti6Al4V implants and early osseointegration in vivo [J]. J. Mater. Sci. Technol., 2019, 35(2): 336-343. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||