J. Mater. Sci. Technol. ›› 2021, Vol. 93: 7-16.DOI: 10.1016/j.jmst.2021.03.048
• Original article • Previous Articles Next Articles
Fengyuan Wang, Ping Xu, Ning Shi, Liru Cui, Yahui Wang, Dawei Liu, Honghong Zhao, Xijiang Han(), Yunchen Du(
)
Published:
2021-12-10
Online:
2021-12-10
Contact:
Xijiang Han,Yunchen Du
About author:
yunchendu@hit.edu.cn (Y. Du).Fengyuan Wang, Ping Xu, Ning Shi, Liru Cui, Yahui Wang, Dawei Liu, Honghong Zhao, Xijiang Han, Yunchen Du. Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution[J]. J. Mater. Sci. Technol., 2021, 93: 7-16.
Fig. 6. Air-atmosphere TG curves (a) and Raman spectra (b) of Co/CF-x, and Magnetic hysteresis loops (c) and their local enlargements (d) of Co/CF-0.5, Co/CF-1.0, Co/CF-1.5, and Co/CF-2.0.
Fig. 9. Three-dimensional RL maps of Co/CF-0 (a), Co/CF-0.5 (b), Co/CF-1.0 (c), Co/CF-1.5 (d), and Co/CF-2.0 (e), and typical RL curves at certain thicknesses of Co/CF-1.5.
Fig. 11. Schematic illustration of dipole and interfacial polarizations (a), eddy current effect and natural ferromagnetic resonance of Co nanoparticle (b), conductive networks in wax matrix and multiple reflection behaviors of incident EM waves (c).
[1] | H.L. Lv, Z.H. Yang, P.L. Wang, G.B. Ji, J.Z. Song, L.R. Zheng, H.B. Zeng, Z.C.J. Xu, Adv. Mater., 30(2018), Article 1706343. |
[2] | W.B. You, H. Bi, W. She, Y. Zhang, R.C. Che, Small, 13(2017), Article 1602779. |
[3] | P. Song, B. Liu, H Qiu, X.T. Shi, D.P. Cao, J.W. Gu, Compos. Commun., 24(2021), Article 100653. |
[4] | F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Science, 353(2016), pp. 1137-1140. |
[5] | B. Zhao, Y. Li, Q.W. Zeng, L. Wang, J.J. Ding, R. Zhang, R.C. Che, Small, 16(2020), Article 2003502. |
[6] | J.Y. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X.G. Yue, Z.H. Jiang, Nanoscale, 8(2016), pp. 8899-8909. |
[7] | P. Song, B. Liu, C.B. Liang, K.P. Ruan, H. Qiu, Z.L. Ma, Y.Q. Guo, J.W. Gu, Nano-Micro Lett., 13(2021), Article 91. |
[8] | G.Z. Wang, Z. Gao, S.W. Tang, C.Q. Chen, F.F. Duan, S.C. Zhao, S.W. Lin, Y.H. Feng, L. Zhou, Y. Qin, ACS Nano, 6(2012), pp. 11009-11017. |
[9] | Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, Adv. Mater., 28(2016), pp. 486-490. |
[10] | M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Jin, Z.L. Hou, J. Yuan, ACS Appl. Mater. Interfaces, 4(2012), pp. 6949-6956. |
[11] | D.W. Liu, Y.C. Du, P. Xu, N. Liu, Y.H. Wang, H.H. Zhao, L.R. Cui, X.J. Han, J. Mater. Chem. C, 7(2019), pp. 5037-5046. |
[12] | J. Yang, Y. Huang, C. Chen, X.D. Liu, H. Liu, Carbon, 152(2019), pp. 545-555. |
[13] | D.W. Liu, Y.C. Du, P. Xu, F.Y. Wang, Y.H. Wang, L.R. Cui, H.H. Zhao, X.J. Han, J. Mater. Chem. A, 9(2021), pp. 5086-5096. |
[14] | F.Y. Wang, N. Wang, X.J. Han, D.W. Liu, Y.H. Wang, L.R. Cui, P. Xu, Y.C. Du, Carbon, 145(2019), pp. 701-711. |
[15] | B.H. Han, W.L. Chu, X.J. Han, P. Xu, D.W. Liu, L.R. Cui, Y.H. Wang, H.H. Zhao, Y.C. Du, Carbon, 168(2020), pp. 404-414. |
[16] | X.M. Zhang, G.B. Ji, W. Liu, B. Quan, X.H. Liang, C.M. Shang, Y. Chen, Y.W. Du, Nanoscale, 7(2015), pp. 12932-12942. |
[17] | X.A. Li, D.X. Du, C.S. Wang, H.Y. Wang, Z.P. Xu, J. Mater. Chem. C, 6(2018), pp. 558-567. |
[18] | X.L. Li, X.W. Yin, C.Q. Song, M.K. Han, H.L. Xu, W.Y. Duan, L.F. Cheng, L.T. Zhang, Adv. Funct. Mater., 28(2018), Article 1803938. |
[19] | J. Zhao, J.L. Zhang, L. Wang, J.K. Li, T. Feng, J.C. Fan, L.X. Chen, J.W. Gu, Compos. Commun., 22(2020), Article 100486. |
[20] | H.L. Xu, X.W. Yin, M. Zhu, M.K. Han, Z.X. Hou, X.L. Li, L.T. Zhang, L.F. Cheng, ACS Appl. Mater. Interfaces, 9(2017), pp. 6332-6341. |
[21] | Y. Zhang, Y. Huang, H.H. Chen, Z.Y. Huang, Y. Yang, P.S. Xiao, Y. Zhou, Y.S. Chen, Carbon, 105(2016), pp. 438-447. |
[22] | Z.W. Zhang, Z.H. Cai, Z.Y. Wang, Y.L. Peng, L. Xia, S.P. Ma, Z.Z. Yin, Y. Huang, Nano-Micro Lett., 13 (2021), p.56. |
[23] | Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Adv. Mater., 27(2015), pp. 2049-2053. |
[24] | J.M. Tang, N. Liang, L. Wang, J. Li, G. Tian, D. Zhang, S.H. Feng, H.J. Yue, Carbon, 152(2019), pp. 575-586. |
[25] | Z.C. Wang, R.B. Wei, J.W. Gu, H. Liu, C.T. Liu, C.J. Luo, J. Kong, Q. Shao, N. Wang, Z.H. Guo, X.B. Liu, Carbon, 139(2018), pp. 1126-1135. |
[26] | C. Chen, S.F. Zeng, X.C. Han, Y.Q. Tan, W.L. Feng, H.H. Shen, S.M. Peng, H.B. Zhang, J. Mater. Sci. Technol., 54(2020), pp. 223-229. |
[27] | Z.Y. Huang, H.H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P.S. Xiao, J.J. Liang, T.F. Zhang, Q. Shi, G.H. Li, Y.S. Chen, Adv. Funct. Mater., 28(2018), Article 1704363. |
[28] | X.F. Zhou, Z.R. Jia, A.L. Feng, X.X. Wang, J.J. Liu, M. Zhang, H.J. Cao, G.L. Wu, Carbon, 152(2019), pp. 827-836. |
[29] | H.G. Wang, F.B. Meng, J.Y. Li, T. Li, Z.J. Chen, H.B. Luo, Z.W. Zhou, ACS Sustainable Chem. Eng., 6(2018), pp. 11801-11810. |
[30] | H.Q. Zhao, Y. Cheng, H.L. Lv, G.B. Ji, Y.W. Du, Carbon, 142(2019), pp. 245-253. |
[31] | Y. Xiong, L.L. Xu, C.X. Yang, Q.F. Sun, X.J. Xu, J. Mater. Chem. A, 8(2020), pp. 18863-18871. |
[32] | D. Ding, Y. Wang, X.D. Li, R. Qiang, P. Xu, W.L. Chu, X.J. Han, Y.C. Du, Carbon, 111(2017), pp. 722-732. |
[33] | Y.H. Wang, X.D. Li, X.J. Han, P. Xu, L.R. Cui, H.H. Zhao, D.W. Liu, F.Y. Wang, Y.C. Du, Chem. Eng. J., 387(2020), Article 124159. |
[34] | H.W. Zhou, C.G. Xue, P. Weis, Y. Suzuki, S.L. Huang, K. Koynov, G.K. Auernhammer, R. Berger, H.J. Butt, S. Wu, Nat. Chem., 9(2017), pp. 145-151. |
[35] | Y.F. Dong, M.L. Yu, Z.Y. Wang, Y. Liu, X.Z. Wang, Z.B. Zhao, J.S. Qiu, Adv. Funct. Mater., 26(2016), pp. 7590-7598. |
[36] | X.B. Wang, Y.J. Zhang, C.Y. Zhi, X. Wang, D.M. Tang, Y.B. Xu, Q.H. Weng, X.F. Jiang, M. Mitome, D. Golberg, Y. Bando, Nat. Commun., 4 (2013), p.2905. |
[37] | S. Fitzpatrick, J.F. McCabe, C.R. Petts, S.W. Booth, Int. J. Pharmaceut., 246(2002), pp. 143-151. |
[38] | C. Ehrhardt, M. Gjikaj, W. Brockner, Thermochim. Acta, 432(2005), pp. 36-40. |
[39] | S. Chattopadhyay, D. Erdemir, J.M.B. Evans, J. Ilavsky, H. Amenitsch, C.U. Segre, A.S. Myerson, Cryst. Growth Des., 5(2005), pp. 523-527. |
[40] | S. Diamond, Cement. Concrete Res., 30(2000), pp. 1517-1525. |
[41] | J. Xiang, J.L. Li, X.H. Zhang, Q. Ye, J.H. Xu, X.Q. Shen, J. Mater. Chem. A, 2(2014), pp. 16905-16914. |
[42] | H. Kafashan, J. Electron. Mater., 48 (2019), p.2. |
[43] | Z.C. Wu, K. Pei, L.S. Xing, X.F. Yu, W.B. You, R.C. Che, Adv. Funct. Mater., 29(2019), Article 1901448. |
[44] | D. Li, H.Y. Liao, H. Kikuchi, T. Liu, ACS Appl. Mater. Interfaces, 9(2017), pp. 44704-44714. |
[45] | Z.N. Li, X.J. Han, Y. Ma, D.W. Liu, Y.H. Wang, P. Xu, C.L. Li, Y.C. Du, ACS Sustainable Chem. Eng., 6(2018), pp. 8904-8913. |
[46] | A.C. Ferrari, J. Robertson, Phys. Rev. B, 61(2000), pp. 14095-14107. |
[47] | L.N. Wang, X.L. Jia, Y.F. Li, F. Yang, L.Q. Zhang, L.P. Liu, X. Ren, H.T. Yang, J. Mater. Chem. A, 2(2014), pp. 14940-14946. |
[48] | Y.Y. Zhu, Y. Liu, Y.H. Gao, Q. Cheng, L. Zhao, Z.F. Yang, Mater. Res. Bull., 87(2017), pp. 135-139. |
[49] | D.W. Liu, Y.C. Du, Z.N. Li, Y.H. Wang, P. Xu, H.H. Zhao, F.Y. Wang, C.L. Li, X.J. Han, J. Mater. Chem. C, 6(2018), pp. 9615-9623 |
[50] | D.L. LesliePelecky, R.D. Rieke, Chem. Mater., 8(1996), pp. 1770-1783. |
[51] | Y.C. Du, W.W. Liu, R. Qiang, Y. Wang, X.J. Han, J. Ma, P. Xu, ACS Appl. Mater. Interfaces, 6(2014), pp. 12997-13006. |
[52] | A. Ohlan, K. Singh, A. Chandra, S.K. Dhawan, ACS Appl. Mater. Interfaces, 2(2010), pp. 927-933. |
[53] | M.S. Cao, C. Han, X.X. Wang, M. Zhang, Y.L. Zhang, J.C. Shu, H.J. Yang, X.Y. Fang, J. Yuan, J. Mater. Chem. C, 6(2018), pp. 4586-4602. |
[54] | G.V. Lashkarev, M.V. Radchenko, M.E. Bugaiova, O.E. Baibara, A.I. Dmitriev, W. Knoff, T. Story, M. Foltyn, L.A. Krushynskaya, Y.A. Stelmakh, Phys. Status Solidi B, 254(2017), Article 1700153. |
[55] | J.W. Liu, R.C. Che, H.J. Chen, F. Zhang, F. Xia, Q.S. Wu, M. Wang, Small, 8(2012), pp. 1214-1221. |
[56] | L. Wang, Y. Huang, X. Sun, H.J. Huang, P.B. Liu, M. Zong, Y. Wang, Nanoscale, 6(2014), pp. 3157-3164. |
[57] | S. Dong, W.Z. Zhang, X.H. Zhang, P. Hu, J.C. Han, Chem. Eng. J., 354(2018), pp. 767-776. |
[58] | C.H. Tian, Y.C. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J.L. Xue, J. Ma, H.T. Zhao, X.J. Han, ACS Appl. Mater. Interfaces, 7(2015), pp. 20090-20099. |
[59] | T. Huang, Z.C. Wu, Q. Yu, D.G. Tan, L. Li, Chem. Eng. J., 359(2019), pp. 69-78. |
[60] | B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, Y.J. Xie, R. Zhang, J. Mater. Chem. A, 3(2015), pp. 10345-10352. |
[61] | Y.L. Lian, B.H. Han, D.W. Liu, Y.H. Wang, H.H. Zhao, P. Xu, X.J. Han, Y.C. Du, Nano-Micro Lett., 12 (2020), p.153. |
[62] | M.Z. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S.H. Ge, W.A. Hines, J.I. Budnick, G.W. Taylor, Appl. Phys. Lett., 80 (2002), p.4404. |
[63] | Y. Wang, Y.C. Du, D. Guo, R. Qiang, C.H. Tian, P. Xu, X.J. Han, J. Mater. Sci., 52(2017), pp. 4399-4411. |
[64] | J.G. Li, J.J. Huang, Y. Qin, F. Ma, Mater. Sci. Eng. B, 138(2007), pp. 199-204. |
[65] | X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang, L. Guo, G.S. Wang, Adv. Funct. Mater., 28(2018), Article 1800761. |
[66] | J.Y. Dong, R. Ullal, J. Han, S.H. Wei, X. Ouyang, J.Z. Dong, W. Gao, J. Mater. Chem. A, 3(2015), pp. 5285-5288. |
[67] | G.J. Guo, F.B. Meng, H.G. Wang, M. Jiang, Z.W. Zhou, Nano Res., 12(2019), pp. 1423-1429. |
[68] | Y.H. Chen, Z.H. Huang, M.M. Lu, W.Q. Cao, J. Yuan, D.Q. Zhang, M.S. Cao, J. Mater. Chem. A, 3(2015), pp. 12621-12625. |
[69] | Y.L. Zhang, K.P. Ruan, X.T. Shi, H. Qiu, Y. Pan, Y. Yan, J.W. Gu, Carbon, 175(2021), pp. 271-280. |
[70] | X.S. Qi, Q. Hu, J.L. Xu, R. Xie, Y. Jiang, W. Zhong, Y.W. Du, Rsc Adv., 6(2016), pp. 11382-11387. |
[71] | X.Y. Xiao, W.J. Zhu, Z. Tan, W. Tian, Y. Guo, H. Wang, J.N. Fu, X. Jian, Compos. Part B-Eng., 152(2018), pp. 316-323. |
[72] | R.W. Shu, W.J. Li, Y. Wu, J.B. Zhang, G.Y. Zhang, Chem. Eng. J., 362(2019), pp. 513-524. |
[73] | H.Y. Lin, H. Zhu, H.F. Guo, L.F. Yu, Mater. Res. Bull., 43(2008), pp. 2697-2702. |
[74] | L. Wang, X.Y. Bai, B. Wen, Z. Du, Y. Lin, Compos. Part B-Eng., 166(2019), pp. 464-471. |
[75] | P.B. Liu, S. Gao, Y. Wang, Y. Huang, W.J. He, W.H. Huang, J.H. Luo, Chem. Eng. J., 381(2020), Article 122653. |
[76] | L. Wang, B. Wen, X.Y. Bai, C. Liu, H.B. Yang, J. Colloid Interf. Sci., 540(2019), pp. 30-38. |
[1] | Huifang Pang, Yuping Duan, Xuhao Dai, Lingxi Huang, Xuan Yang, Tuo Zhang, Xiaoji Liu. The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption [J]. J. Mater. Sci. Technol., 2021, 88(0): 203-214. |
[2] | Sai Gao, Guozheng Zhang, Yi Wang, Xiaopeng Han, Ying Huang, Panbo Liu. MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 88(0): 56-65. |
[3] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
[4] | Yanchun Zhou, Biao Zhao, Heng Chen, Huimin Xiang, Fu-Zi Dai, Shijiang Wu, Wei Xu. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C [J]. J. Mater. Sci. Technol., 2021, 74(0): 105-118. |
[5] | Kun Qian, Qifan Li, Alexander Sokolov, Chengju Yu, Piotr Kulik, Ogheneyunume Fitchorova, Yajie Chen, Chins Chinnasamy, Vincent G. Harris. Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites [J]. J. Mater. Sci. Technol., 2021, 83(0): 256-263. |
[6] | Baolei Wang, Qian Wu, Yonggang Fu, Tong Liu. A review on carbon/magnetic metal composites for microwave absorption [J]. J. Mater. Sci. Technol., 2021, 86(0): 91-109. |
[7] | Xiankai Fu, Bo Yang, Wanqi Chen, Zongbin Li, Haile Yan, Xiang Zhao, Liang Zuo. Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth [J]. J. Mater. Sci. Technol., 2021, 76(0): 166-173. |
[8] | Minghang Li, Xiaomeng Fan, Hailong Xu, Fang Ye, Jimei Xue, Xiaoqiang Li, Laifei Cheng. Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance [J]. J. Mater. Sci. Technol., 2020, 59(0): 164-172. |
[9] | Peng Wang, Junming Zhang, Guowu Wang, Benfang Duan, Donglin He, Tao Wang, Fashen Li. Synthesis and characterization of MoS2/Fe@Fe3O4 nanocomposites exhibiting enhanced microwave absorption performance at normal and oblique incidences [J]. J. Mater. Sci. Technol., 2019, 35(9): 1931-1939. |
[10] | Wei Zhou, Lan Long, Yang Li. Mechanical and electromagnetic wave absorption properties of Cf-Si3N4 ceramics with PyC/SiC interphases [J]. J. Mater. Sci. Technol., 2019, 35(12): 2809-2813. |
[11] | Li Wanchong, Li Chusen, Lin Lihai, Wang Yan, Zhang Jinsong. Foam structure to improve microwave absorption properties of silicon carbide/carbon material [J]. J. Mater. Sci. Technol., 2019, 35(11): 2658-2664. |
[12] | Zhigao Xie, Dianyu Geng, Xianguo Liu, Song Ma, Zhidong Zhang. Magnetic and Microwave-absorption Properties of Graphite-coated (Fe, Ni) Nanocapsules [J]. J Mater Sci Technol, 2011, 27(7): 607-614. |
[13] | Yuchang Qing, Wancheng Zhou, Shu Jia, Fa Luo, Dongmei Zhu. Effect of Heat Treatment on the Microwave Electromagnetic Properties of Carbonyl Iron/Epoxy-Silicone Resin Coatings [J]. J Mater Sci Technol, 2010, 26(11): 1011-1015. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||