J. Mater. Sci. Technol. ›› 2021, Vol. 93: 17-27.DOI: 10.1016/j.jmst.2021.03.037
• Original article • Previous Articles Next Articles
Wenyu Wang, Dejun Ding, Kunpeng Zhou, Man Zhang, Weifen Zhang, Fang Yan*(
), Ni Cheng*(
)
Received:2020-12-31
Revised:2021-03-26
Accepted:2021-03-31
Published:2021-12-10
Online:2021-12-10
Contact:
Fang Yan,Ni Cheng
About author:chengnicn@163.com(N. Cheng).Wenyu Wang, Dejun Ding, Kunpeng Zhou, Man Zhang, Weifen Zhang, Fang Yan, Ni Cheng. Prussian blue and collagen loaded chitosan nanofibers with NIR-controlled NO release and photothermal activities for wound healing[J]. J. Mater. Sci. Technol., 2021, 93: 17-27.
Scheme 1. Schematic illustration of the preparation of SNP-PB / COLI incorporated CSPVA electrospun nanofibers, and the mechanism in applications for wound healing.
Fig. 1. (A) FTIR spectra of PVP, Potassium ferricyanide, Sodium nitroprusside and SNP-PB NPs. (B) TEM images of SNP-PB NPs. (C) EDX mapping (scale bar = 150 nm) images of C, Fe, N, O of SNP-PB NPs. (D) UV-vis-NIR spectra of SNP-PB NPs. (E) Hydrodynamic diameter of SNP-PB NPs.
Fig. 2. (A) Photothermal curves of different concentration of SNP-PB NPs irradiated for 6 min. (B) The thermal imager recorded after irradiated for 6 min. (C) Photothermal curves of different concentration of SNP-PB nanofibrous scaffold irradiated for 6 min. (D) Temperature changes of SNP-PB nanofibrous scaffold after repeated exposure to 808 nm laser (all at 0.5 W/cm2). (E) NO release profiles of SNP-PB NPs (1 mg/mL) after irradiated with NIR at power of 0, 0.5, 1.0, and 1.5 W/cm2. (F) NIR controllability of NO release for SNP-PB NPs (1 mg/mL) indicated under 808 nm laser (0.75 W/ cm2).
Fig. 3. SEM images (A), EDX analysis (B) of the SNP-PB/COLI incorporated CSPVA nanofibers. TEM images of CSPVA (C) and SNP-PB/COLI incorporated CSPVA nanofibers (D).
Fig. 4. (A) Viability (%) of L929 cells at different concentration incubated with the nanofibers scaffold (*p<0.05 compared with control). (B) Hemolysis test of the nanofibers scaffold. (C) Microscope images of calcein AM (green, live cells) and PI (red, dead cells) costained L929 cells treated with SNP-PB nanofibrous scaffold. (Scale bar = 200 µm.)
Fig. 5. Photographs of bacterial colonies formed by S. aureus (A) and E. coli (C) treated with different concentration of nanofibrous scaffold without or with 808 nm laser irradiation (1.0 W/cm2, 5 min). The corresponding bacterial viabilities of S. aureus (B) and E. coli (D) measured using plate count method.
Fig. 6. Photographs of bacterial colonies formed by S. aureus (A) and E. coli (C) treated with different nanofibrous scaffold with or without 808 nm laser irradiation (1.0 W/cm2, 5 min). The corresponding bacterial viabilities of S. aureus (B) and E. coli (D) measured using plate count method.
Fig. 7. Flurescence images of S. aureus (A) and E. coli (B) incubated with PBS, SNP-PB nanofibrous+ice, PB nanofibrous and SNP-PB nanofibrous by SYTO-9 and PI costained.
Fig. 8. (A) Visual observation of healing process upon S. aureus infected wounds treated with PBS (control), NIR (1.0 W/cm2, 5 min) alone, nanofibrous scaffold alone, nanofibrous scaffold + NIR (1.0 W/ cm2, 5 min). (B) Graphical representation of quantitative measurement of wound area on the1th, 5th, 10th days.
Fig. 9. H&E and Masson’s trichrome staining images of the wound tissues of four experimental groups on the 5th and 10th days in the wound-healing process, respectively. Black arrow, red arrow, black dash circle, red dash circle, black dash line indicated inflammatory cells, hair follicles, damaged epidermis, damaged dermis, and boundary of epithelium, respectively. Scale bars are 200 µm.
| [1] | S. Dekoninck, C. Blanpain, Nat. Cell Biol., 21 (1)(2019), pp. 18-24. |
| [2] | P. Martin, Science, 276 (5309)(1997), pp. 75-81. |
| [3] | C. Qing, Chinese Journal of Traumatology, 20 (4)( ), pp. 189-193. |
| [4] | P.M. Mertz, L.G. Ovington, Dermatol. Clin., 11 (4)(1993), pp. 739-747. |
| [5] | J. Zhou, D. Yao, Z. Qian, S. Hou, L. Li, A.T.A. Jenkins, Y. Fan, Biomaterials, 161(2018), pp. 11-23. |
| [6] | M. Olsson, K. Järbrink, U. Divakar, R. Bajpai, Z. Upton, A. Schmidtchen, J. Car, Wound Repair Regen., 27 (1)(2019), pp. 114-125. |
| [7] | A. Moeini, P. Pedram, P. Makvandi, M. Malinconico, G. Gomez d'Ayala, Carbohydr. Polym., 233(2020), Article 115839. |
| [8] | A. Memic, T. Abudula, H.S. Mohammed, K. Joshi Navare, T. Colombani, S.A. Bencherif, ACS Applied Bio Materials, 2 (3)(2019), pp. 952-969. |
| [9] | E. Rezvani Ghomi, S. Khalili, S. Nouri Khorasani, R. Esmaeely Neisiany, S. Ramakrishna, J. Appl. Polym. Sci., 136 (27) (2019), p. 47738. |
| [10] | M.J. Malone-Povolny, S.E. Maloney, M.H. Schoenfisch, Advanced Healthcare Materials, 8 (12)(2019), Article 1801210. |
| [11] | X. Wan, S. Liu, X. Xin, P. Li, J. Dou, X. Han, I.-K. Kang, J. Yuan, B. Chi, J. Shen, Chem. Eng. J., 400(2020), Article 125964. |
| [12] | X. Zhou, H. Wang, J. Zhang, X. Li, Y. Wu, Y. Wei, S. Ji, D. Kong, Q. Zhao, Acta Biomater., 54( ), pp. 128-137. |
| [13] | C.-H. Su, W.-P. Li, L.-C. Tsao, L.-C. Wang, Y.-P. Hsu, W.-J. Wang, M.-C. Liao, C.-L. Lee, C.-S. Yeh, ACS Nano, 13 (4)(2019), pp. 4290-4301. |
| [14] | E. López-Rivera, T.R. Lizarbe, M. Martínez-Moreno, J.M. López-Novoa, A. Rodríguez-Barbero, J. Rodrigo, A.P. Fernández, A. álvarez-Barrientos, S. Lamas, C. Zaragoza, 102(10)(2005) 3685-3690. |
| [15] | Q. Gao, X. Zhang, W. Yin, D. Ma, C. Xie, L. Zheng, X. Dong, L. Mei, J. Yu, C. Wang, Z. Gu, Y. Zhao, Small, 14 (45)(2018), Article 1802290. |
| [16] | A.C. Midgley, Y. Wei, Z. Li, D. Kong, Q. Zhao, Adv. Mater., 32 (3)(2020), Article 1805818. |
| [17] | Y. Duan, Y. Wang, X. Li, G. Zhang, G. Zhang, J. Hu, Chem. Sci., 11 (1)(2020), pp. 186-194. |
| [18] | X. Zhang, J. Du, Z. Guo, J. Yu, Q. Gao, W. Yin, S. Zhu, Z. Gu, Y. Zhao, Advanced Science, 6 (3)(2019), Article 1801122. |
| [19] | Z. Yuan, C. Lin, Y. He, B. Tao, M. Chen, J. Zhang, P. Liu, K. Cai, ACS Nano, 14 (3)(2020), pp. 3546-3562. |
| [20] | J. Li, X. Liu, L. Tan, Z. Cui, X. Yang, Y. Liang, Z. Li, S. Zhu, Y. Zheng, K.W.K. Yeung, X. Wang, S. Wu, Nat. Commun., 10 (1) (2019), p. 4490. |
| [21] | J. Sun, L. Song, Y. Fan, L. Tian, S. Luan, S. Niu, L. Ren, W. Ming, J. Zhao, ACS Appl. Mater. Interfaces, 11 (30)(2019), pp. 26581-26589. |
| [22] | S. Huang, H. Liu, K. Liao, Q. Hu, R. Guo, K. Deng, ACS Appl. Mater. Interfaces, 12 (26)(2020), pp. 28952-28964. |
| [23] | T. Feng, J. Wan, P. Li, H. Ran, H. Chen, Z. Wang, L. Zhang, Biomaterials, 214(2019), Article 119213. |
| [24] | R. Ranjith, S. Balraj, J. Ganesh, M.C. John Milton, Mater. Today Chem., 12(2019), pp. 386-395. |
| [25] | A. Keirouz, M. Chung, J. Kwon, G. Fortunato, N. Radacsi, WIREs Nanomed. Nanobiotechnol., 12 (4) (2020), p.e1626. |
| [26] | H. Wu, Z. Qin, X. Yu, J. Li, H. Lv, X. Yang, J. Mater. Chem. B, 7 (37)(2019), pp. 5669-5676. |
| [27] | S. Ding, Y. Wang, J. Li, S. Chen, J. Mater. Sci. Technol.(2021), 10.1016/j.jmst.2020.12.008. |
| [28] | A. Zhang, Y. Liu, D. Qin, M. Sun, T. Wang, X. Chen, Int. J. Biol. Macromol., 164(2020), pp. 2108-2123. |
| [29] | P. Chaganti, I. Gordon, J.H. Chao, S. Zehtabchi, Am. J. Emerg. Med., 37 (6)(2019), pp. 1184-1190. |
| [30] | K. Ousey, A. Walker, J. Brace, F. Duteille, A. Probst, M. Hughes, C. Milne, W. Cole, J. Wound Care, 28 (Sup9a)(2019), pp. S1-S23. |
| [31] | S. Güneș, F. Tlhmlnlloǧlu, Int. J. Biol. Macromol., 102( ), pp. 933-943. |
| [32] | A. Ajovalasit, M.A. Sabatino, S. Todaro, S. Alessi, D. Giacomazza, P. Picone, M. Di Carlo, C. Dispenza, Carbohydr. Polym., 179(2018), pp. 262-272. |
| [33] | K. Kalantari, E. Mostafavi, A.M. Afifi, Z. Izadiyan, H. Jahangirian, R. Rafiee-Moghaddam, T.J. Webster, Nanoscale, 12 (4)(2020), pp. 2268-2291. |
| [34] | J. Xiao, Y. Zhu, S. Huddleston, P. Li, B. Xiao, O.K. Farha, G.A. Ameer, ACS Nano, 12 (2)(2018), pp. 1023-1032. |
| [35] | F. Gao, W. Li, J. Deng, J. Kan, T. Guo, B. Wang, S. Hao, ACS Appl. Mater. Interfaces, 11 (20)(2019), pp. 18681-18690. |
| [36] | K.A. Rieger, N.P. Birch, J.D. Schiffman, J. Mater. Chem. B, 1 (36)(2013), pp. 4531-4541. |
| [37] | S. Chen, B. Liu, M.A. Carlson, A.F. Gombart, D.A. Reilly, J. Xie, Nanomedicine, 12 (11)( ), pp. 1335-1352. |
| [38] | M. Liu, X.-P. Duan, Y.-M. Li, D.-P. Yang, Y.-Z. Long, Mater. Sci. Eng. C, 76( ), pp. 1413-1423. |
| [39] | S.P. Miguel, R.S. Sequeira, A.F. Moreira, C.S.D. Cabral, A.G. Mendonça, P. Ferreira, I.J. Correia, Eur. J. Pharm. Biopharm., 139(2019), pp. 1-22. |
| [40] | D. Han, A.J. Steckl, ChemPlusChem, 84 (10)(2019), pp. 1453-1497. |
| [41] | J. Yoon, H.-S. Yang, B.-S. Lee, W.-R. Yu, Adv. Mater., 30 (42)(2018), Article 1704765. |
| [42] | Q. Wei, F. Xu, X. Xu, X. Geng, L. Ye, A. Zhang, Z. Feng, Front. Mater. Sci., 10 (2)(2016), pp. 113-121. |
| [43] | W. Zhang, J. Zhang, D. Ding, L. Zhang, L.A. Muehlmann, S.-E. Deng, X. Wang, W. Li, W. Zhang, F Artificial Cells, Nanomed. Biotechnol., 46 (7)(2018), pp. 1463-1470. |
| [44] | S.F. Hosseini, Z. Nahvi, M. Zandi, Food Hydrocolloids., 89(2019), pp. 637-648. |
| [45] | T. Satish Kumar, D. Vijaya Ramu, N.S. Sampath Kumar, Mater. Today: Proc., 19(2019), pp. 2587-2590. |
| [1] | Yongjin Sun, Juntao Zhang, Bi Chen, Yunlong Yang, Haiyan Li, Xin Niu, Qing Li, Weidong Wu, Zongping Xie, Yunfeng Chen, Fuyue Wu, Yang Wang. Small extracellular vesicles secreted by urine-derived stem cells enhanced wound healing in aged mice by ameliorating cellular senescence [J]. J. Mater. Sci. Technol., 2021, 63(0): 216-227. |
| [2] | Kai Chen, Changci Tong, Jinge Yang, Peifang Cong, Ying Liu, Xiuyun Shi, Xu Liu, Jun Zhang, Rufei Zou, Keshen Xiao, Yuyang Ni, Lei Xu, Mingxiao Hou, Hongxu Jin, Yunen Liu. Injectable melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogel accelerates wound healing by reducing inflammation and promoting angiogenesis and collagen deposition [J]. J. Mater. Sci. Technol., 2021, 63(0): 236-245. |
| [3] | Jie Liu, Li Li, Run Zhang, Zhi Ping Xu. Development of CaP nanocomposites as photothermal actuators for doxorubicin delivery to enhance breast cancer treatment [J]. J. Mater. Sci. Technol., 2021, 63(0): 73-80. |
| [4] | Jingwei Xu, Xiaju Cheng, Fuxian Chen, Weijie Li, Xiaohui Xiao, Puxiang Lai, Guopeng Xu, Li Xu, Yue Pan. Fabrication of multifunctional polydopamine-coated gold nanobones for PA/CT imaging and enhanced synergistic chemo-photothermal therapy [J]. J. Mater. Sci. Technol., 2021, 63(0): 97-105. |
| [5] | Donglin Han, Yuan Li, Xiangmei Liu, Kelvin Wai Kwok Yeung, Yufeng Zheng, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Xianbao Wang, Shuilin Wu. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds [J]. J. Mater. Sci. Technol., 2021, 62(0): 83-95. |
| [6] | Yiming Xiang, Qilin Zhou, Zhaoyang Li, Zhenduo Cui, Xiangmei Liu, Yanqin Liang, Shengli Zhu, Yufeng Zheng, Kelvin Wai Kwok Yeung, Shuilin Wu. A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing [J]. J. Mater. Sci. Technol., 2020, 57(0): 1-11. |
| [7] | Ma Jun,Zhao Nan,Betts Lexxus,Zhu Donghui. Bio-Adaption between Magnesium Alloy Stent and the Blood Vessel: A Review [J]. J. Mater. Sci. Technol., 2016, 32(9): 815-826. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
