J. Mater. Sci. Technol. ›› 2022, Vol. 99: 251-259.DOI: 10.1016/j.jmst.2021.04.076
• Research article • Previous Articles Next Articles
Xu Jinga, Guan Boa, Xin Yunchangb,*(
), Wei Xuedongc,*(
), Huang Guangjiea, Liu Chenglub
Received:2021-03-22
Revised:2021-04-22
Accepted:2021-04-25
Published:2022-02-10
Online:2022-02-09
Contact:
Xin Yunchang,Wei Xuedong
About author:gjhuang@cqu.edu.cn (G. Huang).1 The authors contributed equally to this work.
Xu Jing, Guan Bo, Xin Yunchang, Wei Xuedong, Huang Guangjie, Liu Chenglu. A weak texture dependence of Hall-Petch relation in a rare-earth containing magnesium alloy[J]. J. Mater. Sci. Technol., 2022, 99: 251-259.
| Sample | Annealing regime |
|---|---|
| plate 1 | 250°C/3 h + 300°C/4 h |
| plate 2 | 250°C/3 h + 400°C/4 h |
| plate 3 | 250°C/3 h + 450°C/4 h |
| plate 4 | 400°C/6 h + 450°C/8 h |
Table 1 Annealing regimes and designations of Mg-2Zn-1Gd plates.
| Sample | Annealing regime |
|---|---|
| plate 1 | 250°C/3 h + 300°C/4 h |
| plate 2 | 250°C/3 h + 400°C/4 h |
| plate 3 | 250°C/3 h + 450°C/4 h |
| plate 4 | 400°C/6 h + 450°C/8 h |
Fig. 1. Inverse pole figure maps and pole figures of the Mg-2Zn-1Gd plates subjected to different annealing treatments: (a) plate 1, (b) plate 2, (c) plate 3 and (d) plate 4.
| plate1 | plate 2 | plate 3 | plate 4 | |
|---|---|---|---|---|
| RD-tension (MPa) | 154 | 132 | 112 | 111 |
| TD-tension (MPa) | 92 | 75 | 54 | 49 |
Table 2 Yield stresses for TD-tension and RD-tension of the Mg-2Zn-1Gd plates.
| plate1 | plate 2 | plate 3 | plate 4 | |
|---|---|---|---|---|
| RD-tension (MPa) | 154 | 132 | 112 | 111 |
| TD-tension (MPa) | 92 | 75 | 54 | 49 |
| RD-tension | TD-tension | |
|---|---|---|
| σ0 (MPa) | 67 | 6.5 |
| k (MPa μm1/2) | 276 | 280 |
Table 3 Parameters of Hall-Petch relation under TD-tension and RD-tension of the Mg-2Zn-1Gd plate.
| RD-tension | TD-tension | |
|---|---|---|
| σ0 (MPa) | 67 | 6.5 |
| k (MPa μm1/2) | 276 | 280 |
Fig. 4. Schmid factors as a function of the relative spatial position in EBSD maps and the corresponding distributions of SFs: (a) basal slip, (b) prismatic slip and (c) $\left\{ 10\bar{1}2 \right\}$twinning under RD-tension, (d) basal slip, (e) prismatic slip and (f) $\left\{ 10\bar{1}2 \right\}$twinning under TD-tension.
Fig. 6. Inverse pole figure maps showing the grains favoring basal slip (labeled with B), prismatic slip (labeled with P) and {101 ?2} twinning (labeled with T) in Mg-2Zn-1Gd plate under (a) RD-tension and (b) TD-tension.
| Loading condition | Basal slip | Prismatic slip | $\left\{ 10\bar{1}2 \right\}$ twinning |
|---|---|---|---|
| RD-tension | 38% | 62% | 0 |
| TD-tension | 68% | 26% | 6% |
Table 4 Fractions of grains favorable for basal slip, prismatic slip and $\left\{ 10\bar{1}2 \right\}$ twinning under RD-tension and TD-tension.
| Loading condition | Basal slip | Prismatic slip | $\left\{ 10\bar{1}2 \right\}$ twinning |
|---|---|---|---|
| RD-tension | 38% | 62% | 0 |
| TD-tension | 68% | 26% | 6% |
| Sample | B-B (%) | B-P (%) | P-P (%) |
|---|---|---|---|
| RD-tension | 13 | 51 | 36 |
| TD-tension | 51 | 40 | 9 |
Table 5 Frequencies for different deformation transfer modes under RD-tension and TD-tension.
| Sample | B-B (%) | B-P (%) | P-P (%) |
|---|---|---|---|
| RD-tension | 13 | 51 | 36 |
| TD-tension | 51 | 40 | 9 |
Fig. 7. Distributions and averages of ΔStress for different deformation transfer modes in a Mg-2Zn-1Gd plates under (a) RD-tension and (b) TD-tension.
Fig. 9. Distribution of geometrical compatibility factors for slip transfers in a Mg-2Zn-1Gd plates during (a) RD-tension or (b) TD-tension when P-P transfer, B-P transfer and B-B transfer are considered or when P-P transfer only, B-P transfer only and B-B transfer only are considered.
| Sample | k ratio in experiment | k ratio by calculation |
|---|---|---|
| kTD: kRD | 1:1 | 1:1.2 |
Table 6 Comparison between the experimental k ratio and the calculated one by Eq. (8) for TD-tension and RD-tension.
| Sample | k ratio in experiment | k ratio by calculation |
|---|---|---|
| kTD: kRD | 1:1 | 1:1.2 |
| [1] |
H. Qiao, M.R. Barnett, P.D. Wu, Int. J. Plast. 86 (2016) 70-92.
DOI URL |
| [2] |
X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 34 (2018) 245-247.
DOI |
| [3] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
| [4] |
Z. Zeng, J.F. Nie, S.W. Xu, C.H.J. Davies, N. Birbilis, Nat. Commun. 8 (2017) 972.
DOI URL |
| [5] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater 187 (2020) 51-65.
DOI URL |
| [6] |
E. Fathi, H. Mirzadeh, M. Emamy, Mater. Res. Express 6 (2019) 116522.
DOI URL |
| [7] |
T. Homma, N. Kunito, S. Kamado, Scr. Mater. 61 (2009) 644-647.
DOI URL |
| [8] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater 193 (2021) 127-131.
DOI URL |
| [9] |
C. Liu, Y. Zhu, Q. Luo, B. Liu, Q. Gu, Q. Li, J. Mater. Sci. Technol. 34 (2018) 2235-2239.
DOI URL |
| [10] |
H. Pan, G. Qin, Y. Huang, Y. Ren, X. Sha, X. Han, Z. Liu, C. Li, X. Wu, H. Chen, Acta Mater 149 (2018) 350-363.
DOI URL |
| [11] |
G. Wu, J. Lu, K.C. Chan, L. Sun, L. Zhu, Nature 545 (2017) 80-83.
DOI URL |
| [12] |
M.S. Mehranpour, A. Heydarinia, M. Emamy, H. Mirzadeh, A. Koushki, R. Razi, Mater. Sci. Eng. A 802 (2021) 140667.
DOI URL |
| [13] |
E. Karakulak, J. Magnes. Alloys 7 (2019) 355-369.
DOI URL |
| [14] |
Z. Zareian, M. Emamy, M. Malekan, H. Mirzadeh, W.J. Kim, A. Bahmani, Mater. Sci. Eng. A 774 (2020) 138929.
DOI URL |
| [15] | R. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch, Philos. Mag. 7 (2006) 45-58. |
| [16] |
C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, M.T. Pérez-Prado, Acta Mater 84 (2015) 443-456.
DOI URL |
| [17] |
H. Yu, Y. Xin, M. Wang, Q. Liu, J. Mater. Sci. Technol. 34 (2018) 248-256.
DOI URL |
| [18] |
H. Yu, C. Li, Y. Xin, A. Chapuis, X. Huang, Q. Liu, Acta Mater 128 (2017) 313-326.
DOI URL |
| [19] | G.T. Gray, J. Phys. IV 7 (1997) 423-428. |
| [20] |
S.G. Song, G.T. Gray, Metall. Mater. Trans. A 26 (1995) 2665-2675.
DOI URL |
| [21] |
Y.N. Wang, C.I. Chang, C.J. Lee, H.K. Lin, J.C. Huang, Scr. Mater. 55 (2006) 637-640.
DOI URL |
| [22] |
W. Yuan, S.K. Panigrahi, J.Q. Su, R.S. Mishra, Scr. Mater. 65 (2011) 994-997.
DOI URL |
| [23] |
L.L. Chang, Y.N. Wang, X. Zhao, M. Qi, Mater. Charact. 60 (2009) 991-994.
DOI URL |
| [24] |
C. Yan, Y. Xin, C. Wang, H. Liu, Q. Liu, J. Mater. Sci. Technol. 52 (2020) 89-99.
DOI URL |
| [25] |
P. Zhang, Y. Xin, L. Zhang, S. Pan, Q. Liu, J. Mater. Sci. Technol. 41 (2020) 98-104.
DOI URL |
| [26] | L. Peng, H. Jiang, Z. Cai, K. Qiang, Z. Yun, J. Mages. Alloys 4 (2016) 188-196. |
| [27] |
Y. Chino, M. Kado, M. Mabuchi, Acta Mater 56 (2008) 387-394.
DOI URL |
| [28] |
R.K. Sabat, A.P. Brahme, R.K. Mishra, K. Inal, S. Suwas, Acta Mater 161 (2018) 246-257.
DOI URL |
| [29] |
J.L. Li, D. Wu, R.S. Chen, E.H. Han, Acta Mater 159 (2018) 31-45.
DOI URL |
| [30] |
W.B. Hutchinson, M.R. Barnett, Scr. Mater. 63 (2010) 737-740.
DOI URL |
| [31] |
Y. Wang, H. Choo, Acta Mater 81 (2014) 83-97.
DOI URL |
| [32] |
L. Wang, Z. Zheng, H. Phukan, P. Kenesei, J.S. Park, J. Lind, R.M. Suter, T.R. Bieler, Acta Mater 132 (2017) 598-610.
DOI URL |
| [33] |
B. Guan, Y. Xin, X. Huang, P. Wu, Q. Liu, Acta Mater 173 (2019) 142-152.
DOI |
| [34] |
D.V. Wilson, J.A. Chapman, Philos. Mag. 8 (1963) 1543-1551.
DOI URL |
| [35] |
N. Hansen, Scr. Mater. 51 (2004) 801-806.
DOI URL |
| [36] |
R.W. Armstrong, Mater. Trans. 55 (2014) 2-12.
DOI URL |
| [1] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
| [2] | Lei Jiang, Changsheng Wang, Huadong Fu, Jie Shen, Zhihao Zhang, Jianxin Xie. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2022, 98(0): 33-43. |
| [3] | Lei Lei, Qinyang Zhao, Cong Wu, Yongqing Zhao, Shixing Huang, Weiju Jia, Weidong Zeng. Variant selection, coarsening behavior of α phase and associated tensile properties in an α+β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 101-113. |
| [4] | R. Silva, S. Vacchi G., L. Kugelmeier C., G.R. Santos I., A. Mendes Filho A., C.C. Magalhães D., R.M. Afonso C., L. Sordi V., A.D. Rovere C.. New insights into the hardening and pitting corrosion mechanisms of thermally aged duplex stainless steel at 475 °C: A comparative study between 2205 and 2101 steels [J]. J. Mater. Sci. Technol., 2022, 98(0): 123-135. |
| [5] | Mengcheng Zhou, Xinfang Zhang. Regulating the recrystallized grain to induce strong cube texture in oriented silicon steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 126-139. |
| [6] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
| [7] | Shuang Zhang, Fei Wang, Ping Huang. Enhanced Hall-Petch strengthening in graphene/Cu nanocomposites [J]. J. Mater. Sci. Technol., 2021, 87(0): 176-183. |
| [8] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
| [9] | Durga Bhakta Pokharel, Liping Wu, Junhua Dong, Amar Prasad Yadav, Dhruba Babu Subedi, Madhusudan Dhakal, Lin Zha, Xin Mu, Aniefiok Joseph Umoh, Wei Ke. Effect of glycine addition on the in-vitro corrosion behavior of AZ31 magnesium alloy in Hank’s solution [J]. J. Mater. Sci. Technol., 2021, 81(0): 97-107. |
| [10] | C.J. Barr, K. Xia. Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 82(0): 57-68. |
| [11] | Hui Fu, Xiaoye Zhou, Bo Wu, Lei Qian, Xu-Sheng Yang. Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique [J]. J. Mater. Sci. Technol., 2021, 82(0): 227-238. |
| [12] | L.Y. Zhao, H. Yan, R.S. Chen, En-Hou Han. Orientations of nuclei during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 162-167. |
| [13] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
| [14] | Durga Bhakta Pokharel, Liping Wu, Junhua Dong, Xin Wei, Ini-Ibehe Nabuk Etim, Dhruba Babu Subedi, Aniefiok Joseph Umoh, Wei Ke. Effect of D-fructose on the in-vitro corrosion behavior of AZ31 magnesium alloy in simulated body fluid [J]. J. Mater. Sci. Technol., 2021, 66(0): 202-212. |
| [15] | Huhu Su, Xinzhe Zhou, Shijian Zheng, Hengqiang Ye, Zhiqing Yang. Atomic-resolution studies on reactions between basal dislocations and $\left\{ 10\bar{1}2 \right\}$ coherent twin boundaries in a Mg alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 28-35. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
