J. Mater. Sci. Technol. ›› 2022, Vol. 99: 239-250.DOI: 10.1016/j.jmst.2021.05.043
• Research article • Previous Articles Next Articles
You Shi, Yang Bai, Yanzhou Lei, Haoruo Zhang, Shengtai Zhou*(
), Huawei Zou*(
), Mei Liang, Yang Chen
Received:2021-02-25
Revised:2021-02-25
Accepted:2021-02-25
Published:2022-02-10
Online:2022-02-09
Contact:
Shengtai Zhou,Huawei Zou
About author:hwzou@163.com (H. Zou).You Shi, Yang Bai, Yanzhou Lei, Haoruo Zhang, Shengtai Zhou, Huawei Zou, Mei Liang, Yang Chen. Simultaneously enhanced heat dissipation and tribological properties of polyphenylene sulfide-based composites via constructing segregated network structure[J]. J. Mater. Sci. Technol., 2022, 99: 239-250.
Fig. 1. (A) Schematic diagram for preparing PPS@PDA-CNTs-SiC composites; (B) the diagram for preparing PPS@PDA-CNTs-SiC via co-deposition method; SEM images of (C) pure PPS powder; (D) PPS@PDA-CNTs; (E, F) PPS@PDA-CNTs-SiC.
Fig. 3. XPS survey spectra and corresponding C 1s high-resolution spectra of (A1, A2) pure PPS; (B1, B2) PPS@PDA; (C1, C2) PPS@PDA-CNTs; (D1, D2) PPS@PDA-CNTs-SiC composites, respectively.
Fig. 4. (A) Thermal conductivity (λ) of pure PPS, PPS/SiC, PPS/CNTs/SiC and PPS@PDA-CNTs-SiC composites; (B) the real-time evolution of surface temperature and (C) optical infrared images of pure PPS and corresponding composites. The optical images were taken every 10 s ranging from 0 to 100 s.
Fig. 5. SEM images of the cryo-fractured surface of (A) pure PPS; (B) melt blended PPS/SiC; (C) melt blended PPS/CNTs/SiC; (D) PPS@PDA-CNTs-SiC. Insert images: POM images of pure PPS and PPS@PDA-CNTs-SiC.
Fig. 6. Rheological behavior of pure PPS, PPS/SiC, PPS/CNTs/SiC and PPS@PDA-CNTs-SiC composites. (A) Storage modulus (G′); (B) loss modulus (G′′); (C) complex viscosity (η?); (D) G′ as a function of G′′ with increasing frequency.
Fig. 9. (A1-D1) Schematic diagram and (A2-D2) SEM images at the worn surface of pure PPS and corresponding composites; (C3, C4) EDS images of the worn surface of PPS/CNTs/SiC; (D3, D4) EDS images of the worn surface of PPS@PDA-CNTs-SiC; (E) shore-D hardness of PPS-based composites.
Fig. 10. Optical images and 3D topography of the worn surface of (A1, A2) pure PPS; (B1, B2) PPS/SiC; (C, C2) PPS/CNTs/SiC and (D1, D2) PPS@PDA-CNTs-SiC composites.
| Sample | Pure PPS | PPS/SiC | PPS/CNTs/SiC | PPS@PDA-CNTs-SiC |
|---|---|---|---|---|
| Ra | 1.88 | 32.49 | 23.89 | 5.86 |
Table 1 The roughness (Ra) of the worn surface of PPS and corresponding composites.
| Sample | Pure PPS | PPS/SiC | PPS/CNTs/SiC | PPS@PDA-CNTs-SiC |
|---|---|---|---|---|
| Ra | 1.88 | 32.49 | 23.89 | 5.86 |
| [1] |
K. Holmberg, P. Andersson, A. Erdemir, Tribol. Int. 47 (2012) 221-234.
DOI URL |
| [2] |
L. Guo, G. Zhang, D. Wang, F. Zhao, T. Wang, Q. Wang, Compos. Part A-Appl. Sci. 102 (2017) 400-413.
DOI URL |
| [3] |
Y. Shi, M. Liang, H. Zou, S. Zhou, Y. Chen, Ind. Eng. Chem. Res. 60 (2021) 281-290.
DOI URL |
| [4] | J.N. Panda, J. Bijwe, R.K. Pandey, Wear 360 (2016) 87-96. |
| [5] |
X. Lv, X. Wang, S. Tang, D. Wang, L. Yang, A. He, T. Tang, J. Wei, Colloid. Surf. B 189 (2020) 110819.
DOI URL |
| [6] |
J. Yuan, Z. Zhang, M. Yang, F. Guo, X. Men, W. Liu, Compos. Part A-Appl. S. 102 (2017) 243-252.
DOI URL |
| [7] |
J. Gu, Q. Zhang, J. Dang, J. Zhang, S. Chen, Polym. Bull. 62 (2009) 689-697.
DOI URL |
| [8] |
P.C. Hsu, X. Liu, C. Liu, X. Xie, H.R. Lee, A.J. Welch, T. Zhao, Y. Cui, Nano lett 15 (2015) 365-371.
DOI URL |
| [9] |
L. Shao, L. Shi, X. Li, N. Song, P. Ding, Compos. Sci. Technol. 135 (2016) 83-91.
DOI URL |
| [10] |
X. Shi, R. Zhang, K. Ruan, T. Ma, Y. Guo, J. Gu, J. Mater. Sci. Technol. 82 (2021) 239-249.
DOI URL |
| [11] | P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu, Z. Ma, Y. Guo, J. Gu, Nano-Micro Lett 13 (1) (2021) 1-17. |
| [12] |
H. Yan, X. Dai, K. Ruan, S. Zhang, X. Shi, Y. Guo, H. Cai, J. Gu, Adv. Compos. Hybri. Mater. 4 (1) (2021) 36-50.
DOI URL |
| [13] |
S. Zhou, Y. Chen, H. Zou, M. Liang, Thermochim. Acta 566 (2013) 84-91.
DOI URL |
| [14] |
K. Ruan, X. Shi, Y. Guo, J. Gu, Compos. Commun. 22 (2020) 100518.
DOI URL |
| [15] | K. Ruan, Y. Guo, C. Lu, X. Shi, T. Ma, Y. Zhang, J. Kong, J. Gu, Research 2021 (2021) 1-13. |
| [16] |
Z. Han, A. Fina, Prog. Polym. Sci. 36 (7) (2011) 914-944.
DOI URL |
| [17] |
Y. Chen, X. Hou, M. Liao, W. Dai, Z. Wang, C. Yan, H. Li, C.T. Lin, N. Jiang, J. Yu, Chem. Eng. J. 381 (2020) 122690-122696.
DOI URL |
| [18] |
S.Y. Wu, Y.L. Huang, C.C.M. Ma, S.M. Yuen, C.C. Teng, S.Y. Yang, Compos. Part A-Appl. S. 42 (11) (2011) 1573-1583.
DOI URL |
| [19] |
Y. Yao, X. Zhu, X. Zeng, R. Sun, J.B. Xu, C.P. Wong, ACS Appl. Mater. Inter. 10 (11) (2018) 9669-9678.
DOI URL |
| [20] |
T. Zhou, X. Wang, X. Liu, D. Xiong, Carbon 48 (2010) 1171-1176.
DOI URL |
| [21] |
X. Li, C. Li, X. Zhang, Y. Jiang, L. Xia, J. Wang, X. Song, H. Wu, S. Guo, Chem. Eng. J. 390 (2020) 124563.
DOI URL |
| [22] |
M. Cai, Q. Yu, W. Liu, F. Zhou, Chem. Soc. Rev. 49 (2020) 7753-7818.
DOI URL |
| [23] |
Y. Xin, F. Xu, M. Wang, T. Li, Tribol. Lett. 66 (2018) 1-18.
DOI URL |
| [24] |
X. Xi, Y.Q. Xia, J. Appl. Polym. Sci. 134 (2017) 45263.
DOI URL |
| [25] |
H. Zhou, H. Wang, X. Du, Y. Mo, H. Yuan, H.Y. Liu, Compos. Part A-Appl. S. 123 (2019) 270-277.
DOI URL |
| [26] |
H. Zhou, H. Wang, X. Du, Y. Zhang, H. Zhou, H. Yuan, H.Y. Liu, Y.W. Mai, Carbon 139 (2018) 1168-1177.
DOI URL |
| [27] |
Y. Shao, F. Xu, W. Li, K. Zhang, C. Zhang, R. Li, Y. Qiu, Compos. Part A-Appl. S. 88 (2016) 98-105.
DOI URL |
| [28] |
K. Zhang, G. Zhang, B. Liu, X. Wang, S. Long, J. Yang, Compos. Sci. Technol. 98 (2014) 57-63.
DOI URL |
| [29] |
M. Greisel, J. Jäger, J. Moosburger-Will, M.G.R.Sause, W.M. Mueller, S. Horn, Compos. Part A-Appl. S. 66 (2014) 117-127.
DOI URL |
| [30] |
Y. Yang, H. Duan, S. Zhang, P. Niu, G. Zhang, S. Long, X. Wang, J. Yang, Compos. Sci. Technol. 75 (2013) 28-34.
DOI URL |
| [31] |
K. Kim, J. Kim, Compos. Sci. Technol. 134 (2016) 209-216.
DOI URL |
| [32] |
W. Luo, Q. Liu, Y. Li, S. Zhou, H. Zou, M. Liang, Compos. Part B-Eng. 91 (2016) 579-588.
DOI URL |
| [33] |
Y. Liu, K. Ai, L. Lu, Chem. Rev. 114 (2014) 5057-5115.
DOI URL |
| [34] |
S.M. Kang, S. Park, D. Kim, S.Y. Park, R.S. Ruoff, H. Lee, Adv. Funct. Mater. 21 (1) (2011) 108-112.
DOI URL |
| [35] |
W. Lee, J.U. Lee, B.M. Jung, J.H. Byun, J.W. Yi, S.B. Lee, B.S. Kim, Carbon 65 (2013) 296-304.
DOI URL |
| [36] |
H.P. Cong, P. Wang, M. Gong, S.H. Yu, Nano Energy 3 (2014) 55-63.
DOI URL |
| [37] |
J. Zhou, Q. Xiong, J. Ma, J. Ren, P.B. Messersmith, P. Chen, H. Duan, ACS Nano 10 (2016) 11066-11075.
DOI URL |
| [38] |
L. Valentini, S. Bittolo Bon, M. Hernández, M.A.Lopez-Manchado, N.M. Pugno, Compos. Sci. Technol. 166 (2018) 109-114.
DOI URL |
| [39] |
C. Kostagiannakopoulou, X. Tsilimigkra, G. Sotiriadis, V. Kostopoulos, Compos. Part B-Eng. 129 (2017) 18-25.
DOI URL |
| [40] |
N.K. Myshkin, M.I. Petrokovets, A.V.. Kovalev, Tribol.Int. 38 (2005)910-921.
DOI URL |
| [41] |
Y. Shi, S.T. Zhou, Z.G. Heng, M. Liang, Y. Wu, Y. Chen, H.W. Zou, Ind. Eng. Chem. Res. 58 (2019) 16541-16551.
DOI URL |
| [42] |
H.C. Yang, J.K. Pi, K.J. Liao, H. Huang, Q.Y. Wu, X.J. Huang, Z.K. Xu, ACS Appl. Mater. Interfaces 6 (2014) 12566-12572.
DOI URL |
| [43] |
M. Kim, J. Lee, H.G. Roh, D. Kim, J. Byeon, J. Park, Polymers 9 (2017) 460.
DOI URL |
| [44] |
J. Xing, Z. Xu, B. Deng, Polymers 10 (2018) 83.
DOI URL |
| [45] |
W. Cui, M. Li, J. Liu, B. Wang, C. Zhang, L. Jiang, Q. Cheng, ACS Nano 8 (9) (2014) 9511-9517.
DOI URL |
| [46] |
Z.Y. Xi, Y.Y. Xu, L.P. Zhu, Y. Wang, B.K. Zhu, J. Membrane Sci. 327 (2009) 244-253.
DOI URL |
| [47] | J.X. Wan, Y.F. Qin, S.B. Li, X.H. Wang, Adv. Mater. Res. 332-334 (2011) 1045-1048. |
| [48] |
H. Zhang, E. López-Honorato, A. Javed, X. Zhao, J. Tan, P. Xiao, J. Eur. Ceram. Soc. 32 (2012) 1775-1786.
DOI URL |
| [49] |
X. Qiang, H. Li, Y. Zhang, S. Tian, J. Wei, Mater. Lett. 107 (2013) 315-317.
DOI URL |
| [50] |
Y. Fan, H. Ben, L. Li, S. Meng, S. Zhang, X. Zheng, J. Zhang, L. Yin, S. Chen, Appl. Catal. B-Environ. 274 (2020) 119073.
DOI URL |
| [51] |
L. Zhao, Y. Yu, H. Huang, X. Yin, J. Peng, J. Sun, L. Huang, Y. Tang, L. Wang, Compos. Part B-Eng. 174 (2019) 106790.
DOI URL |
| [52] |
P. Pötschke, T. Fornes, D. Paul, Polymer 43 (2002) 3247-3255.
DOI URL |
| [53] |
A. Kurdi, W.H. Kan, L. Chang, Tribol. Int. 130 (2019) 94-105.
DOI URL |
| [54] |
K.I. Alam, A. Dorazio, D. Burris, Tribol. Lett. 68 (2020) 1-13.
DOI URL |
| [55] |
Y. Yang, H. Wang, J. Ren, G. Gao, G. Zhao, S. Chen, N. Wang, J. Wang, Tribol. Int. 154 (2021) 106718.
DOI URL |
| [56] |
S. Kamerling, A.K. Schlarb, Compos. Sci. Technol. 175 (2019) 69-76.
DOI URL |
| [1] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
| [2] | Shaohan Li, Weiwei Sun, Yi Luo, Jin Yu, Litao Sun, Bao-Tian Wang, Ji-Xuan Liu, Guo-Jun Zhang, Igor Di Marco. Pushing the limit of thermal conductivity of MAX borides and MABs [J]. J. Mater. Sci. Technol., 2022, 97(0): 79-88. |
| [3] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
| [4] | Shiyi Wen, Yong Du, Jing Tan, Yuling Liu, Peng Zhou, Jianzhan Long, George Kaptay. A new model for thermal conductivity of “continuous matrix / dispersed and separated 3D-particles” type composite materials and its application to WC-M (M = Co, Ag) systems [J]. J. Mater. Sci. Technol., 2022, 97(0): 123-133. |
| [5] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
| [6] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
| [7] | Yue Zhou, William G. Fahrenholtz, Joseph Graham, Gregory E. Hilmas. From thermal conductive to thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity of ZrCx [J]. J. Mater. Sci. Technol., 2021, 82(0): 105-113. |
| [8] | Ying Li, Changdan Gong, Chenggong Li, Kunpeng Ruan, Chao Liu, Huan Liu, Junwei Gu. Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films [J]. J. Mater. Sci. Technol., 2021, 82(0): 250-256. |
| [9] | Ximeng Dong, Wenlin Cui, Wei-Di Liu, Shuqi Zheng, Lei Gao, Luo Yue, Yue Wu, Boyi Wang, Zipei Zhang, Liqiang Chen, Zhi-Gang Chen. Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe [J]. J. Mater. Sci. Technol., 2021, 86(0): 204-209. |
| [10] | Xutong Yang, Xiao Zhong, Junliang Zhang, Junwei Gu. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. J. Mater. Sci. Technol., 2021, 68(0): 209-215. |
| [11] | Ying Lin, Jin Chen, Shian Dong, Guangning Wu, Pingkai Jiang, Xingyi Huang. Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites [J]. J. Mater. Sci. Technol., 2021, 83(0): 219-227. |
| [12] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
| [13] | Yongjian Zhang, Guangzhu Bai, Xiaoyan Liu, Jingjie Dai, Xitao Wang, Hailong Zhang. Reinforcement size effect on thermal conductivity in Cu-B/diamond composite [J]. J. Mater. Sci. Technol., 2021, 91(0): 1-4. |
| [14] | Samuel Kimani Kihoi, Joseph Ngugi Kahiu, Hyunji Kim, U. Sandhya Shenoy, D. Krishna Bhat, Seonghoon Yi, Ho Seong Lee. Optimized Mn and Bi co-doping in SnTe based thermoelectric material: A case of band engineering and density of states tuning [J]. J. Mater. Sci. Technol., 2021, 85(0): 76-86. |
| [15] | Xiong Yang, Daquan Liu, Jianbo Li, Ruonan Min, Huijun Kang, Linwei Li, Zongning Chen, Enyu Guo, Tongmin Wang. Top-down method to fabricate TiNi1+xSn half-Heusler alloy with high thermoelectric performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 39-45. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
