J. Mater. Sci. Technol. ›› 2022, Vol. 97: 79-88.DOI: 10.1016/j.jmst.2021.05.006
• Research Article • Previous Articles Next Articles
Shaohan Lia,b, Weiwei Sunc,*(), Yi Luoa,b, Jin Yua,b, Litao Sunc, Bao-Tian Wangd,e, Ji-Xuan Liuf, Guo-Jun Zhangf, Igor Di Marcog,h,i
Received:
2021-04-09
Revised:
2021-05-02
Accepted:
2021-05-04
Published:
2021-06-17
Online:
2021-06-17
Contact:
Weiwei Sun
About author:
* Jiangsu Province Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China. E-mail address: provels8467@gmail.com (W.Sun).1 These authors contributed equally to this work.
Shaohan Li, Weiwei Sun, Yi Luo, Jin Yu, Litao Sun, Bao-Tian Wang, Ji-Xuan Liu, Guo-Jun Zhang, Igor Di Marco. Pushing the limit of thermal conductivity of MAX borides and MABs[J]. J. Mater. Sci. Technol., 2022, 97: 79-88.
Fig. 1. The energetics of the predicted structures of (a) Nb2PB2, (b) Nb2PB, (c) Nb2SB2, and (d) Nb2SB explored during the eight generations of the evolutionary process in USPEX. Crystal structures for the stable (e) Nb2AB2 and (f) Nb2AB structures from the side view (left) and top view (right) are characterized, where the blue, green and pink spheres represent for Nb, B and P/S atoms respectively. The unit cell is marked by the black dashed line. The angles with respect to Nb-A-A, B-Nb-B are marked by θ, η. The angle between B-B bond ζ is only characterized in Nb2AB2, as the B-B bond in Nb2AB cannot be formed (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Borides | a | c | Eform | ΔEcomp (The most competing phases) |
---|---|---|---|---|
Nb2PB2 | 3.21 | 6.68 | -4.189 | -1.290 (NbB2, NbP) |
Nb2PB | 3.35 | 11.76 | -6.741 | -0.972 (NbB, NbP) |
Nb2SB2 | 3.22 | 6.69 | -3.924 | 0.373 (Nb2B3, Nb3B4, Nb3S5) |
Nb2SB | 3.38 | 11.65 | -6.951 | 0.016 (NbB, Nb3B2, Nb3S4) |
Nb2PC | 3.31 | 11.65 | -3.051 | -1.231 (Nb6C5, NbP, C) |
Nb2SC | 3.32 | 11.72 | -3.054 | 0.096 (Nb2C, Nb6C5, Nb3S4) |
Table 1 The calculated in-plane and out-of-plane lattice parameters a and c in Å, the formation energy ${{E}_{\text{form}}}$ in eV/f.u., and the reaction energy ΔEcomp with respect to the most competing phases in eV/f.u. of Nb2PB2, Nb2PB, Nb2SB2, Nb2SB, Nb2PC and Nb2SC.
Borides | a | c | Eform | ΔEcomp (The most competing phases) |
---|---|---|---|---|
Nb2PB2 | 3.21 | 6.68 | -4.189 | -1.290 (NbB2, NbP) |
Nb2PB | 3.35 | 11.76 | -6.741 | -0.972 (NbB, NbP) |
Nb2SB2 | 3.22 | 6.69 | -3.924 | 0.373 (Nb2B3, Nb3B4, Nb3S5) |
Nb2SB | 3.38 | 11.65 | -6.951 | 0.016 (NbB, Nb3B2, Nb3S4) |
Nb2PC | 3.31 | 11.65 | -3.051 | -1.231 (Nb6C5, NbP, C) |
Nb2SC | 3.32 | 11.72 | -3.054 | 0.096 (Nb2C, Nb6C5, Nb3S4) |
Fig. 2. The phonon dispersion spectra (PDS) and the partial phonon density of states (PHDOS) are shown for (a) Nb2PB2, (b) Nb2PB, (c) Nb2SB2, (d) Nb2SB, (e) Nb2PC and (f) Nb2SC. Three acoustic modes (black) and optical band 4 (orange), 5 (violet), 6 (pink) are emphasized with bold lines. The partial PHDOS of Nb, X (B, C), A (P, S) are colored in red, cyan and blue respectively (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 3. Band structure (left panels) and Fermi surface (right panels) of (a) Nb2PB2, (b) Nb2PB, (c) Nb2SB2, (d) Nb2SB, (e) Nb2PC and (f) Nb2SC. The Fermi energy (EF) is set at 0 eV and visualized by a dotted line. The bands crossing the EF are highlighted and numbered by #17, #18 for Nb2PB2, #30, #31, #32 for Nb2PB, #17, #18, #19 for Nb2SB2, #30, #31, #32, #33 for Nb2SB, #30, #31, #32, #33 for Nb2PC, and #31, #32, #33, #34 for Nb2SC.
MAX | A = P | A = S | ||||||
---|---|---|---|---|---|---|---|---|
${{\kappa }_{\text{tot}}}$ | ${{\kappa }_{\text{lat}}}$ | ${{\kappa }_{\text{ele}}}$ | ${{\kappa }_{\text{ele}}}$/${{\kappa }_{\text{lat}}}$ | $\;{{\kappa }_{\text{tot}}}$ | ${{\kappa }_{\text{lat}}}$ | ${{\kappa }_{\text{ele}}}$ | ${{\kappa }_{\text{ele}}}$/${{\kappa }_{\text{lat}}}$ | |
Nb2AB2 | 65.66 | 46.23 | 19.43 | 0.42 | 21.45 | 9.50 | 11.95 | 1.25 |
Nb2AB | 53.09 | 47.73 | 5.36 | 0.11 | 24.04 | 18.20 | 5.85 | 0.32 |
Nb2AC | 26.04 | 21.23 | 4.81 | 0.23 | 5.44 | 3.28 | 2.16 | 0.65 |
Table 2 $\;{{\kappa }_{\text{tot}}}$, ${{\kappa }_{\text{lat}}}$ and κele (W/(m K)) as well as the ratio of ${{\kappa }_{\text{ele}}}$over ${{\kappa }_{\text{lat}}}$ of the calculated materials, at RT.
MAX | A = P | A = S | ||||||
---|---|---|---|---|---|---|---|---|
${{\kappa }_{\text{tot}}}$ | ${{\kappa }_{\text{lat}}}$ | ${{\kappa }_{\text{ele}}}$ | ${{\kappa }_{\text{ele}}}$/${{\kappa }_{\text{lat}}}$ | $\;{{\kappa }_{\text{tot}}}$ | ${{\kappa }_{\text{lat}}}$ | ${{\kappa }_{\text{ele}}}$ | ${{\kappa }_{\text{ele}}}$/${{\kappa }_{\text{lat}}}$ | |
Nb2AB2 | 65.66 | 46.23 | 19.43 | 0.42 | 21.45 | 9.50 | 11.95 | 1.25 |
Nb2AB | 53.09 | 47.73 | 5.36 | 0.11 | 24.04 | 18.20 | 5.85 | 0.32 |
Nb2AC | 26.04 | 21.23 | 4.81 | 0.23 | 5.44 | 3.28 | 2.16 | 0.65 |
Fig. 4. Accumulated lattice thermal conductivity ${{\kappa }_{\text{lat}}}$ as a function of frequency at RT for (a) Nb2PB2, (b) Nb2PB, (c) Nb2SB2, (d) Nb2SB, (e) Nb2PC and (f) Nb2SC. ${{\kappa }_{\text{lat}}}$ along in- and out-of-plane directions are labeled by circle and triangle uniformly. The contribution from the overall acoustic modes and optical modes are distinguished with yellow and gray areas. The total contribution from the acoustic modes is indicated in percentage value. |${{\nu }_{i}}$| as a function of the wave vector for (g) Nb2PB2, (h) Nb2PB, (i) Nb2SB2, and (j) Nb2SB, (k) Nb2PC and (l) Nb2SC, including acoustic modes, and optical modes from bands 4, 5, 6. ${{\tau }_{i}}$ along the K-Γ path (in-plane) and Γ-A path (out-of-plane) at RT for (m) Nb2PB2, (n) Nb2PB, (o) Nb2SB2, (p) Nb2SB, (q) Nb2PC and (r) Nb2SC. The accumulation of acoustic modes is represented by black points, and the optical modes at bands 4-6 are symbolized as above. Temperature dependent $\kappa $ deduced from Slack's equation (diamond) as well as κmin from Clarke's model (dashed line) compared to DFT results: (s) Nb2PB2, (t) Nb2PB, (u) Nb2SB2, (v) Nb2SB, (w) Nb2PC and (x) Nb2SC. ${{\kappa }_{\text{tot}}}$ and ${{\kappa }_{\text{lat}}}$ from DFT are depicted with unfilled and hollow circles (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
[1] |
M.W. Barsoum, M. Radovic, Annu. Rev. Mater. Res. 41 (2011) 195-227.
DOI URL |
[2] |
M.W. Barsoum, Prog. Solid State Chem. 28 (2000) 201-281.
DOI URL |
[3] |
M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, J. Phys. Condens. Matter 26 (2014) 505503.
DOI URL |
[4] |
L. Zheng, J. Wang, X. Lu, F. Li, J. Wang, Y. Zhou, J. Am. Ceram. Soc. 93 (2010) 3068-3071.
DOI URL |
[5] |
Z. Lin, M. Zhuo, Y. Zhou, M. Li, J. Wang, J. Am. Ceram. Soc. 89 (2006) 3765-3769.
DOI URL |
[6] |
J. Zhang, B. Liu, J.Y. Wang, Y.C. Zhou, J. Mater. Res. 24 (2009) 39-49.
DOI URL |
[7] |
M. Sundberg, G. Malmqvist, A. Magnusson, T. El-Raghy, Ceram. Int. 30 (2004) 1899-1904.
DOI URL |
[8] | M. Radovic, M.W. Barsoum, Am. Ceram. Soc. Bull. 92 (2013) 20-27. |
[9] | M.W. Barsoum, MAX phases: Properties of Machinabel Ternary Carbides and Nitrides, John Wiley and Sons, 2013. |
[10] |
W. Tian, P. Wang, G. Zhang, Y. Kan, Y. Li, D. Yan, Scr. Mater. 54 (2006) 841-846.
DOI URL |
[11] |
J.D. Hettinger, S.E. Lofland, P. Finkel, T. Meehan, J. Palma, K. Harrell, S. Gupta, A. Ganguly, T. El-Raghy, M.W. Barsoum, Phys. Rev. B 72 (2005) 115120.
DOI URL |
[12] |
J. Zhang, Y.C. Zhou, J. Mater. Res. 23 (2008) 924-932.
DOI URL |
[13] |
P. Finkel, B. Seaman, K. Harrell, J.D. Hettinger, S.E. Lofland, A. Ganguly, M. W. Barsoum, Z. Sun, S. Li, R. Ahuja, Phys. Rev. B 70 (2004) 085104.
DOI URL |
[14] |
M.W. Barsoum, T. EI-Raghy, S. Chakraborty, J. Appl. Phys. 88 (2000) 6313.
DOI URL |
[15] |
T. Scabarozi, A. Ganguly, J.D. Hettinger, S.E. Lofland, S. Amini, P. Finkel, T. El-Raghy, M.W. Barsoum, J. Appl. Phys. 104 (2008) 073713.
DOI URL |
[16] | M.W. Barsoum, T. Scabarozi, S. Amini, J.D. Hettinger, S.E. Lofland, J.Am. Ceram. Soc. 94 (2011) 4123-4126. |
[17] | T.H. Scabarozi, S. Amini, P. Finkel, O.D. Leaffer, J.E. Spanier, M.W. Barsoum, M. Drulis, H. Drulis, W.M. Tambussi, J.D. Hettinger, S.E. Lofland, J.Appl. Phys. 104 (2008) 33502. |
[18] | D.T. Morelli, G.A. Slack, in: High Thermal Conductivity Materials, Springer, 2006, pp. 37-68. |
[19] |
Y. Fu, B. Wang, Y. Teng, X. Zhu, X. Feng, M. Yan, P. Korzhavyi, W. Sun, Phys. Chem. Chem. Phys. 19 (2017) 15471-15483.
DOI URL |
[20] |
W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, J. Am. Ceram. Soc. 90 (2007) 1347-1364.
DOI URL |
[21] |
G. Surucu, A. Gencer, X. Wang, O. Surucu, J. Alloys Compd. 819 (2020) 153256.
DOI URL |
[22] | T. Rackl, L. Eisenburger, R. Niklaus, D. Johrendt, Phys. Rev. Mater. 3 (2019) 054001. |
[23] |
M. Ade, H. Hillebrecht, Inorg. Chem. 54 (2015) 6122-6135.
DOI URL |
[24] |
J. Wang, T. Ye, Y. Gong, J. Wu, N. Miao, T. Tada, H. Hosono, Nat. Commun. 10 (2019) 2284.
DOI URL |
[25] |
N. Miao, J. Wang, Y. Gong, J. Wu, H. Niu, S. Wang, K. Li, A.R. Oganov, T. Tada, H. Hosono, Chem. Mater. 32 (2020) 6947-6957.
DOI URL |
[26] |
S. Kota, M. Agne, E. Zapata-Solvas, O. Dezellus, D. Lopez, B. Gardiola, M. Radovic, M.W. Barsoum, Phys. Rev. B 95 (2017) 144108.
DOI URL |
[27] |
Y. Bai, X. Qi, A. Duff, N. Li, F. Kong, X. He, R. Wang, W.E. Lee, Acta Mater. 132 (2017) 69-81.
DOI URL |
[28] |
Y. Bai, X. Qi, X. He, G. Song, Y. Zheng, B. Hao, H. Yin, J. Gao, A.Ian Duff, J. Am. Ceram. Soc. 103 (2020) 5837-5851.
DOI URL |
[29] |
P. Eklund, M. Beckers, U. Jansson, H. Hogberg, L. Hultman, Thin Solid Films 518 (2010) 1851-1878.
DOI URL |
[30] |
M. Dahlqvist, B. Alling, J. Rosen, Phys. Rev. B 81 (2010) 220102.
DOI URL |
[31] | Y. Mo, P. Rulis, W.Y. Ching, Phys. Rev. B 86(2012). |
[32] |
X. He, Y. Bai, C. Zhu, Y. Sun, M. Li, M.W. Barsoum, Comput. Mater. Sci. 49 (2010) 691-698.
DOI URL |
[33] |
A.R. Oganov, C.W. Glass, J. Chem. Phys. 124 (2006) 244704.
PMID |
[34] |
C.W. Glass, A.R. Oganov, N. Hansen, Comput. Phys. Commun. 175 (2006) 713-720.
DOI URL |
[35] |
A.R. Oganov, A.O. Lyakhov, M. Valle, Acc. Chem. Res. 44 (2011) 227-237.
DOI URL |
[36] |
A.O. Lyakhov, A.R. Oganov, H.T. Stokes, Q. Zhu, Comput. Phys. Commun. 184 (2013) 1172-1182.
DOI URL |
[37] |
G. Kress, J. Hafner, Phys. Rev. B 49 (1994) 14251-14269.
DOI URL |
[38] |
G. Kress, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
[39] |
P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
[40] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
PMID |
[41] |
A.A. Mostofi, J.R. Yates, Y.S. Lee, I. Souza, D. Vanderbilt, N. Marzari, Comput. Phys. Commun. 178 (2008) 685-699.
DOI URL |
[42] |
S. Baroni, P. Giannozzi, A. Testa, Phys. Rev. Lett. 58 (1987) 1861-1864.
PMID |
[43] |
A. Togo, I. Tanaka, Scr. Mater. 108 (2015) 1-5.
DOI URL |
[44] |
Y. Bai, X. Qi, X. He, D. Sun, F. Kong, Y. Zheng, R. Wang, A.I. Duff, J. Am. Ceram. Soc. 102 (2019) 3715-3727.
DOI URL |
[45] |
Y. Bai, X. He, R. Wang, C. Zhu, J. Appl. Phys. 114 (2013) 173709.
DOI URL |
[46] |
A. Togo, L. Chaput, I. Tanaka, Phys. Rev. B 91 (2015) 094306.
DOI URL |
[47] |
G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175 (2006) 67-71.
DOI URL |
[48] |
A.D. Pathak, I.C. Tranca, S.V. Nedea, H.A. Zondag, C.C. Rindt, D.M. Smeulders, J. Phys. Chem. C 121 (2017) 20576-20590.
DOI PMID |
[49] | E. Angot, B. Huang, C. Levelut, R.Le Parc, P. Hermet, A.S. Pereira, G. Aquilanti, G. Frapper, O. Cambon, J. Haines, Phys. Rev. Mater. 1 (2017) 033607. |
[50] |
X. Sun, Y. Lei, R. Zhou, B. Qu, D. Li, B. Zhang, X.C. Zeng, RSC Adv. 7 (2017) 40486-40498.
DOI URL |
[51] |
Y.J. Jin, R. Wang, J.Z. Zhao, Y.P. Du, C.D. Zheng, L.Y. Gan, J.F. Liu, H. Xu, S.Y. Tong, Nanoscale 9 (2017) 13112-13118.
DOI URL |
[52] |
N.H. Protik, J. Carrete, N.A. Katcho, N. Mingo, D. Broido, Phys. Rev. B 94 (2016) 045207.
DOI URL |
[53] |
L. Chaput, G. Hug, P. Pécheur, H. Scherrer, Phys. Rev. B 75 (2007) 035107.
DOI URL |
[54] |
S. Gowthamaraju, U.P. Deshpande, P.A. Bhobe, Curr. Appl. Phys. 24 (2021) 19-23.
DOI URL |
[55] |
Y. Zhong, D. Sarker, T. Fan, L. Xu, X. Li, G.Z. Qin, Z.K. Han, J. Cui, Adv. Electron. Mater. 7 (2021) 2001262.
DOI URL |
[56] | M.W. Barsoum, T. El-Raghy, C.J. Rawn, W.D. Porter, H. Wang, E.A. Payzant, C. R. Hubbard, J. Phys. Chem. Solids 60 (1999) 429-439. |
[57] |
P. Finkel, K. Seaman, K. Harrell, J. Palma, J.D. Hettinger, S.E. Lofland, A. Ganguly, M. W. Barsoum, Z. Sun, L. Sa, R. Ahuja, Phys. Rev. B 70 (2004) 085104.
DOI URL |
[58] |
V. Keppens, D. Mandrus, B.C. Sales, B.C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D.A. Gajewski, E.J. Freeman, S. Bennington, Nature 395 (1998) 876.
DOI URL |
[59] |
B.C. Sales, B.C. Chakoumakos, D. Mandrus, J.W. Sharp, J. Solid State Chem. 146 (1999) 528.
DOI URL |
[60] |
C. Dhakal, S. Aryal, R. Sakidja, W. Ching, J. Eur. Ceram. Soc. 35 (2015) 3203-3212.
DOI URL |
[61] | D.R. Clarke, S.R. Phillpot, Mater. Today 8 (2005) 22-29. |
[1] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[2] | Shiyi Wen, Yong Du, Jing Tan, Yuling Liu, Peng Zhou, Jianzhan Long, George Kaptay. A new model for thermal conductivity of “continuous matrix / dispersed and separated 3D-particles” type composite materials and its application to WC-M (M = Co, Ag) systems [J]. J. Mater. Sci. Technol., 2022, 97(0): 123-133. |
[3] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
[4] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[5] | Samuel Kimani Kihoi, Joseph Ngugi Kahiu, Hyunji Kim, U. Sandhya Shenoy, D. Krishna Bhat, Seonghoon Yi, Ho Seong Lee. Optimized Mn and Bi co-doping in SnTe based thermoelectric material: A case of band engineering and density of states tuning [J]. J. Mater. Sci. Technol., 2021, 85(0): 76-86. |
[6] | Xiong Yang, Daquan Liu, Jianbo Li, Ruonan Min, Huijun Kang, Linwei Li, Zongning Chen, Enyu Guo, Tongmin Wang. Top-down method to fabricate TiNi1+xSn half-Heusler alloy with high thermoelectric performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 39-45. |
[7] | Longkang Cong, Shouyang Zhang, Shengyue Gu, Wei Li. Thermophysical properties of a novel high entropy hafnate ceramic [J]. J. Mater. Sci. Technol., 2021, 85(0): 152-157. |
[8] | Yongjian Zhang, Guangzhu Bai, Xiaoyan Liu, Jingjie Dai, Xitao Wang, Hailong Zhang. Reinforcement size effect on thermal conductivity in Cu-B/diamond composite [J]. J. Mater. Sci. Technol., 2021, 91(0): 1-4. |
[9] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
[10] | Yue Zhou, William G. Fahrenholtz, Joseph Graham, Gregory E. Hilmas. From thermal conductive to thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity of ZrCx [J]. J. Mater. Sci. Technol., 2021, 82(0): 105-113. |
[11] | Ying Li, Changdan Gong, Chenggong Li, Kunpeng Ruan, Chao Liu, Huan Liu, Junwei Gu. Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films [J]. J. Mater. Sci. Technol., 2021, 82(0): 250-256. |
[12] | Ximeng Dong, Wenlin Cui, Wei-Di Liu, Shuqi Zheng, Lei Gao, Luo Yue, Yue Wu, Boyi Wang, Zipei Zhang, Liqiang Chen, Zhi-Gang Chen. Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe [J]. J. Mater. Sci. Technol., 2021, 86(0): 204-209. |
[13] | Won-Seok Ko, Ki Beom Park, Hyung-Ki Park. Density functional theory study on the role of ternary alloying elements in TiFe-based hydrogen storage alloys [J]. J. Mater. Sci. Technol., 2021, 92(0): 148-158. |
[14] | Seong-Tae Kim, Jong Min Park, Kwi-Il Park, Sang-Eun Chun, Ho Seong Lee, Pyuck-Pa Choi, Seonghoon Yi. Enhanced thermoelectric composite performance from mesoporous carbon additives in a commercial Bi0.5Sb1.5Te3 matrix [J]. J. Mater. Sci. Technol., 2021, 94(0): 175-182. |
[15] | Xutong Yang, Xiao Zhong, Junliang Zhang, Junwei Gu. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. J. Mater. Sci. Technol., 2021, 68(0): 209-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||