J. Mater. Sci. Technol. ›› 2022, Vol. 97: 69-78.DOI: 10.1016/j.jmst.2021.04.029
• Research Article • Previous Articles Next Articles
Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao*(), Ruiqiang Hang*(
)
Received:
2020-12-14
Revised:
2021-04-02
Accepted:
2021-04-13
Published:
2021-06-16
Online:
2021-06-16
Contact:
Xiaohong Yao,Ruiqiang Hang
About author:
hangruiqiang@tyut.edu.cn (R. Hang).Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao, Ruiqiang Hang. Corrosion behavior, antibacterial ability, and osteogenic activity of Zn-incorporated Ni-Ti-O nanopore layers on NiTi alloy[J]. J. Mater. Sci. Technol., 2022, 97: 69-78.
Fig. 2. (A) XRD spectra. (B) XPS survey spectra, (C) Ti 2p, (D) Ni 2p, (E) Zn 2p high-resolution spectra of NiTi substrate, NP-5, NP-25, NP-80, NP-5-Zn, NP-25-Zn and NP-80-Zn.
Sample | Atomic concentrations (at.%) | Ni/Ti ratio | ||||||
---|---|---|---|---|---|---|---|---|
Ni | Ti | O | C | N | Cl | Zn | ||
NiTi | 2.62 | 7.29 | 22.95 | 63.15 | 2.62 | - | - | 0.36 |
NP-5 | 1.33 | 12.48 | 36.87 | 44.21 | 3.09 | 2.02 | - | 0.11 |
NP-25 | 1.84 | 14.27 | 38.83 | 41.46 | 1.69 | 1.91 | - | 0.13 |
NP-80 | 1.94 | 14.00 | 38.83 | 41.15 | 2.81 | 1.26 | - | 0.14 |
NP-5-Zn | 0.76 | 10.42 | 32.33 | 42.37 | 3.78 | - | 10.34 | 0.07 |
NP-25-Zn | 0.79 | 13.58 | 41.55 | 31.93 | - | - | 12.16 | 0.06 |
NP-80-Zn | 0.97 | 13.3 | 39.60 | 32.28 | - | - | 13.30 | 0.07 |
Table 1 Surface chemical composition of different samples.
Sample | Atomic concentrations (at.%) | Ni/Ti ratio | ||||||
---|---|---|---|---|---|---|---|---|
Ni | Ti | O | C | N | Cl | Zn | ||
NiTi | 2.62 | 7.29 | 22.95 | 63.15 | 2.62 | - | - | 0.36 |
NP-5 | 1.33 | 12.48 | 36.87 | 44.21 | 3.09 | 2.02 | - | 0.11 |
NP-25 | 1.84 | 14.27 | 38.83 | 41.46 | 1.69 | 1.91 | - | 0.13 |
NP-80 | 1.94 | 14.00 | 38.83 | 41.15 | 2.81 | 1.26 | - | 0.14 |
NP-5-Zn | 0.76 | 10.42 | 32.33 | 42.37 | 3.78 | - | 10.34 | 0.07 |
NP-25-Zn | 0.79 | 13.58 | 41.55 | 31.93 | - | - | 12.16 | 0.06 |
NP-80-Zn | 0.97 | 13.3 | 39.60 | 32.28 | - | - | 13.30 | 0.07 |
Fig. 3. (A) Polarization curves, EIS spectra in the form of Nyquist plots (B) and Bode plots (C) for NiTi substrate, anodized samples (NP-5, NP-25 and NP-80) and Zn-incorporated samples (NP-5-Zn, NP-25-Zn and NP-80-Zn), full lines represent the fitting results; (D) Equivalent electrical circuit for impedance spectral analysis.
Sample | Ecorr (mV vs SCE) | Icorr (nA cm-2) | βc (V dec-1) |
---|---|---|---|
NiTi | -373±45.1 | 166±12.3 | 0.10±0.010 |
NP-5 | -488±8.5 | 34.7±4.6 | 0.09±0.006 |
NP-25 | -497±24.0 | 24.5±1.6 | 0.09±0.010 |
NP-80 | -453±12.4 | 19.4±3.5 | 0.10±0.011 |
NP-5-Zn | -510±13.8 | 11.0±0.7 | 0.08±0.006 |
NP-25-Zn | -542±26.7 | 7.9±0.5 | 0.08±0.002 |
NP-80-Zn | -418±13.7 | 6.9±0.7 | 0.14±0.020 |
Table 2 Parameters obtained from polarization curves of different samples.
Sample | Ecorr (mV vs SCE) | Icorr (nA cm-2) | βc (V dec-1) |
---|---|---|---|
NiTi | -373±45.1 | 166±12.3 | 0.10±0.010 |
NP-5 | -488±8.5 | 34.7±4.6 | 0.09±0.006 |
NP-25 | -497±24.0 | 24.5±1.6 | 0.09±0.010 |
NP-80 | -453±12.4 | 19.4±3.5 | 0.10±0.011 |
NP-5-Zn | -510±13.8 | 11.0±0.7 | 0.08±0.006 |
NP-25-Zn | -542±26.7 | 7.9±0.5 | 0.08±0.002 |
NP-80-Zn | -418±13.7 | 6.9±0.7 | 0.14±0.020 |
Sample | Rs (Ω cm2) | Rp (105 Ω cm2) | CPEP (10-5Ω-1 cm-2 s - n) | n |
---|---|---|---|---|
NiTi | 22.04±0.11 | 5.98±0.12 | 2.57±0.14 | 0.95±0.090 |
NP-5 | 23.56±2.01 | 10.61±0.18 | 3.60±0.05 | 0.93±0.005 |
NP-25 | 25.52±1.03 | 17.32±4.01 | 3.31±0.03 | 0.94±0.001 |
NP-80 | 24.76±0.87 | 32.01±3.87 | 2.95±0.33 | 0.95±0.230 |
NP-5-Zn | 18.27±0.04 | 97.62±0.23 | 1.66±0.14 | 0.96±0.002 |
NP-25-Zn | 26.57±1.77 | 100.02±6.72 | 1.15±0.02 | 0.94±0.030 |
NP-80-Zn | 18.69±1.21 | 138.45±10.32 | 1.36±0.23 | 0.95±0.014 |
Table 3 Fitting results of the EIS data.
Sample | Rs (Ω cm2) | Rp (105 Ω cm2) | CPEP (10-5Ω-1 cm-2 s - n) | n |
---|---|---|---|---|
NiTi | 22.04±0.11 | 5.98±0.12 | 2.57±0.14 | 0.95±0.090 |
NP-5 | 23.56±2.01 | 10.61±0.18 | 3.60±0.05 | 0.93±0.005 |
NP-25 | 25.52±1.03 | 17.32±4.01 | 3.31±0.03 | 0.94±0.001 |
NP-80 | 24.76±0.87 | 32.01±3.87 | 2.95±0.33 | 0.95±0.230 |
NP-5-Zn | 18.27±0.04 | 97.62±0.23 | 1.66±0.14 | 0.96±0.002 |
NP-25-Zn | 26.57±1.77 | 100.02±6.72 | 1.15±0.02 | 0.94±0.030 |
NP-80-Zn | 18.69±1.21 | 138.45±10.32 | 1.36±0.23 | 0.95±0.014 |
Fig. 4. Ni2+ (A) and Zn2+ (B) concentrations released from different samples; (C) Optical images of S. aureus colonies on ager; (D) Antibacterial rates of different samples against S. aureus, **p < 0.01.
Fig. 5. (A) Fluorescence images of the BMSCs at days 1, 4, and 7; (B) Cell proliferation measured by MTT at days 1, 4, and 7. ## p < 0.01; (C) Fluorescent images of the BMSCs grown on different samples for 24 h.
Fig. 6. Qualitative images (A) ALP activity; (B) collagen secretion; (C) ECM mineralization; Quantitative results (D) ALP activity; (E) collagen secretion; (F) ECM mineralization of BMSCs at days 7 and 14. # p < 0.05 and # # p < 0.01.
[1] | C.L. Chu, H.L. Ji, L.H. Yin, Y.P. Pu, P.H. Lin, P.K. Chu, Mater. Sci. Eng. C31 (2011) 423-427. |
[2] |
I. Gotman, D. Ben-David, R.E. Unger, T. Boese, E.Y. Gutmanas, C.J. Kirkpatrick, Acta Biomater 9 (2013) 8440-8448.
DOI PMID |
[3] |
J. Li, L. Qin, K. Yang, Z. Ma, Y. Wang, L. Cheng, D. Zhao, J. Mater. Sci. Technol. 36 (2020) 190-208.
DOI URL |
[4] |
A. Nespoli, V. Dallolio, F. Stortiero, S. Besseghini, F. Passaretti, E. Villa, Mater. Sci. Eng. C 37 (2014) 171-176.
DOI URL |
[5] |
Y. Liu, Z. Ren, L. Bai, M. Zong, A. Gao, R. Hang, H. Jia, B. Tang, P.K. Chu, Corros. Sci. 123 (2017) 209-216.
DOI URL |
[6] |
R. Hang, F. Zhao, X. Yao, B. Tang, P.K. Chu, Appl. Surf. Sci. 517 (2020) 146118.
DOI URL |
[7] |
J. Chen, A. Ashames, M.A. Buabeid, K.M. Fahelelbom, M. Ijaz, G. Murtaza, Int. J. Pharmaceut. 585 (2020) 119477.
DOI URL |
[8] |
X. Shen, Y. Zhang, Y. Hu, Z. Luo, P. Ma, L. Li, C. Mu, L. Huang, Y. Pei, K. Cai, J. Mater. Chem. B 4 (2016) 7101-7111.
DOI URL |
[9] | Y. Cai, X. Wang, C.K. Poh, H.C. Tan, M.T. Soe, S. Zhang, W. Wang, Colloid. Sur-face. B 116 (2014) 681-686. |
[10] |
L. Bai, Z. Du, J. Du, W. Yao, J. Zhang, Z. Weng, S. Liu, Y. Zhao, Y. Liu, X. Zhang, X. Huang, X. Yao, R. Crawford, R. Hang, D. Huang, B. Tang, Y. Xiao, Biomaterials 162 (2018) 154-169.
DOI URL |
[11] |
E.D. Discher, D.J. Mooney, P.W. Zandstra, Science 324 (2009) 1673-1677.
DOI PMID |
[12] |
Y. Hu, K. Cai, Z. Luo, D. Xu, D. Xie, Y. Huang, W. Yang, P. Liu, Acta Biomater 8 (2012) 439-448.
DOI PMID |
[13] |
A. Gao, R. Hang, X. Huang, L. Zhao, X. Zhang, L. Wang, B. Tang, S. Ma, P.K. Chu, Biomaterials 35 (2014) 4223-4235.
DOI URL |
[14] |
Z. Weng, L. Bai, Y. Liu, Y. Zhao, Y. Sun, X. Zhang, X. Huang, D. Huang, X. Yao, R. Hang, Appl. Surf. Sci. 486 (2019) 441-451.
DOI URL |
[15] |
L. Mao, L. Xia, J. Chang, J. Liu, L. Jiang, C. Wu, B. Fang, Acta Biomater 61 (2017) 217-232.
DOI URL |
[16] |
D. Vojtech, J. Kubasek, J. Serak, P. Novak, Acta Biomater 7 (2011) 3515-3522.
DOI URL |
[17] |
J.M. Zhang, Y.H. Sun, Y. Zhao, Y.L. Liu, X.H. Yao, B. Tang, R.Q. Hang, Rare Metals 38 (2019) 552-560.
DOI URL |
[18] |
J. Ye, B. Li, M. Li, Y. Zheng, S. Wu, Y. Han, Acta Biomater 107 (2020) 313-324.
DOI URL |
[19] |
K. Yusa, O. Yamamoto, M. Iino, H. Takano, M. Fukuda, Z. Qiao, T. Sugiyama, Arch. Oral Biol. 71 (2016) 162-169.
DOI URL |
[20] | M. Zhang, W.L. Deng, X.N. Yang, Y.K. Wang, X.Y. Zhang, R.Q. Hang, K.K. Deng, X. B. Huang, Rare Metals 38 (2019) 620-628. |
[21] |
N.P. Shetti, S.D. Bukkitgar, K.R. Reddy, C.V. Reddy, T.M. Aminabhavi, Biosens. Bioelectron. 141 (2019) 111417.
DOI URL |
[22] | Y. Qiao, W. Zhang, P. Tian, F. Meng, H. Zhu, X. Jiang, X. Liu, P.K. Chu, Biomate-rials 35 (2014) 6882-6897. |
[23] |
Y. Xiang, Q. Zhou, Z. Li, Z. Cui, X. Liu, Y. Liang. S. Zhu. Y. Zheng, K.W.K. Yeung, S. Wu, J. Mater Sci. Technol. 57 (2020) 1-11.
DOI URL |
[24] |
M. Dermience, G. Lognay, F. Mathieu, P. Goyens, J. Trace Elem. Med. Biol. 32 (2015) 86-106.
DOI PMID |
[25] |
K.B. Hadley, S.M. Newman, J.R. Hunt, J. Nutr. Biochem. 21 (2010) 297-303.
DOI PMID |
[26] |
R. Kumar, A. Umar, G. Kumar, H.S. Nalwa, Ceram. Int. 43 (2017) 3940-3961.
DOI URL |
[27] |
Y.F. Zheng, D. Liu, X.L. Liu, L. Li, Appl. Surf. Sci. 255 (2008) 512-514.
DOI URL |
[28] |
Z.Y. Zhang, Q. Wang, H.Q. Xu, W.C. Zhang, Q.Y. Zhou, H.P. Zeng, J.L. Yang, J.W. Zhu, X.F. Zhu, Electrochem. Commun. 114 (2020) 106717.
DOI URL |
[29] |
Q. Zhou, M. Tian, Z. Ying, Y. Dan, F. Tang, J. Zhang, J. Zhu, X. Zhu, Electrochem. Commun. 111 (2020) 106663.
DOI URL |
[30] |
A. Gao, R. Hang, L. Bai, B. Tang, P.K. Chu, Electrochim. Acta 271 (2018) 699-718.
DOI URL |
[31] |
G. Jin, H. Qin, H. Cao, S. Qian, Y. Zhao, X. Peng, X. Zhang, X. Liu, P.K. Chu, Biomaterials 35 (2014) 7699-7713.
DOI URL |
[32] | L. Zhao, H. Wang, K. Huo, X. Zhang, W. Wang, Y. Zhang, Z. Wu, P.K. Chu, Bio-materials 34 (2013) 19-29. |
[33] |
L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, Y. Zhang, Z. Wu, P.K. Chu, Biomaterials 32 (2011) 5706-5716.
DOI URL |
[34] |
J. Wang, A. Liu, C. Wang, R. You, F. Liu, S. Li, Z. Yang, J. He, X. Yan, P. Sun, G. Lu, Sensor. Actuat. B-Chem. 296 (2019) 126644.
DOI URL |
[35] |
R. Hang, S. Liu, Y. Liu, Y. Zhao, L. Bai, M. Jin, X. Zhang, X. Huang, X. Yao, B. Tang, Mater. Sci. Eng. C 97 (2019) 715-722.
DOI URL |
[36] |
N. Patra, S.K. Karuturi, N.J. Vasa, D. Nakamura, M. Higashihata, V. Singh, I. A. Palani, J. Alloys Compd. 770 (2019) 1119-1129.
DOI URL |
[37] |
M.H. Wong, F.T. Cheng, H.C. Man, Scr. Mater. 56 (2007) 205-208.
DOI URL |
[38] |
X. Lu, Y. Li, P. Ju, Y. Chen, J. Yang, K. Qian, T. Zhang, F. Wang, Corros. Sci. 148 (2019) 264-271.
DOI URL |
[39] |
D. Jiang, X. Xia, J. Hou, G. Cai, X. Zhang, Z. Dong, Chem. Eng. J. 373 (2019) 285-297.
DOI |
[40] |
N. Dai, L. Zhang, J. Zhang, X. Zhang, Q. Ni, Y. Chen, M. Wu, C. Yang, Corros. Sci. 111 (2016) 703-710.
DOI URL |
[41] |
Y. Dong, J. Li, D. Xu, G. Song, D. Liu, H. Wang, M. Khan, K. Yang, F. Wang, J. Mater Sci. Technol. 64 (2021) 176-186.
DOI URL |
[42] |
X. Dong, Q. Sun, Y. Zhou, Y. Qu, H. Shi, B. Zhang, S. Xu, W. Liu, N. Li, J. Yan, Corros. Sci. 170 (2020) 108688.
DOI URL |
[43] |
Z. Esen, E. Butev Ocal, A. Akkaya, B. Gurcay, C. Ozcan, B.A. Ozgumus, O. Duygulu, A.F. Dericioglu, Corros. Sci. 166 (2020) 108470.
DOI URL |
[44] |
H. Liu, F. Huang, W. Yuan, Q. Hu, J. Liu, Y.F. Cheng, Corros. Sci. 173 (2020) 108758.
DOI URL |
[45] |
L. Wang, Y. Dou, S. Han, J. Wu, Z. Cui, Appl. Surf. Sci. 504 (2020) 144340.
DOI URL |
[46] |
Z. Li, J. Wang, Y. Dong, D. Xu, X. Zhang, J. Wu, T. Gu, F. Wang, J. Mater Sci. Technol. 71 (2021) 177-185.
DOI URL |
[47] |
Y. Gao, D. Feng, M. Moradi, C. Yang, Y. Jin, D. Liu, D. Xu, X. Chen, F. Wang, Corros. Sci. 180 (2021) 109188.
DOI URL |
[48] |
N. Dai, L. Zhang, J. Zhang, Q. Chen, M. Wu, Corros. Sci. 102 (2016) 484-489.
DOI URL |
[49] |
L. Bai, Y. Zhao, P. Chen, X. Zhang, X. Huang, Z. Du, R. Crawford, X. Yao, B. Tang, R. Hang, Y. Xiao, Small 17 (2021) 2006287.
DOI URL |
[50] | A. Dwivedi, A. Mazumder, N. Nasongkla, J. Drug Deliv. Sci. Tech. 52 (2019) 215-223. |
[51] |
M. Li, L. Li, K. Su, X. Liu, T. Zhang, Y. Liang, D. Jing, X. Yang, D. Zheng, Z. Cui, Z. Li, S. Zhu, K.W.K. Yeung, Y. Zheng, X. Wang, S. Wu, Adv. Sci. 6 (2019) 1900599.
DOI URL |
[52] |
H. Begam, S.K. Nandi, B. Kundu, A. Chanda, Mater. Sci. Eng. C 70 (2017) 856-869.
DOI URL |
[53] |
K. Huo, X. Zhang, H. Wang, L. Zhao, X. Liu, P.K. Chu, Biomaterials 34 (2013) 3467-3478.
DOI URL |
[54] |
D. Wang, L. Liu, F. Zhang, K. Tao, E. Pippel, K. Domen, Nano Lett 11 (2011) 3649-3655.
DOI URL |
[55] |
H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, S. Yanagida, J. Mater. Chem. 11 (2001) 1694-1703.
DOI URL |
[56] |
N. Bayat, S. Sanjabi, Z.H. Barber, Appl. Surf. Sci. 257 (2011) 8493-8499.
DOI URL |
[57] |
C.E. Outten, T.V. O’Halloran, Science 292 (2001) 2488-2492.
PMID |
[58] |
R. Kumar, U. Ahmad, K. Girish, H.S. Nalwa, Ceram. Int. 43 (2017) 3940-3961.
DOI URL |
[59] |
M. Yamaguchi, H. Oishi, Y. Suketa, Biochem. Pharmacol. 36 (1987) 4007-4012.
PMID |
[60] |
C. Wang, K. Lin, J. Chang, J. Sun, Biomaterials 34 (2013) 64-77.
DOI URL |
[61] |
J.R. Nuttall, P.I. Oteiza, Neurotox. Res. 21 (2012) 128-141.
DOI PMID |
[62] | Z. Tang, S.N. Sahu, M.A. Khadeer, G. Bai, R.B. Franklin, A. Bone 38 (2006) 181-198. |
[1] | Yuan Zhang, Shan Fu, Lei Yang, Gaowu Qin, Erlin Zhang. A nano-structured TiO2/CuO/Cu2O coating on Ti-Cu alloy with dual function of antibacterial ability and osteogenic activity [J]. J. Mater. Sci. Technol., 2022, 97(0): 201-212. |
[2] | Yu Fu, Jun Li, Hong Luo, Cuiwei Du, Xiaogang Li. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 217-233. |
[3] | Pan Liu, Lulu Hu, Qinhao Zhang, Cuiping Yang, Zuosi Yu, Jianqing Zhang, Jiming Hu, Fahe Cao. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressive ions [J]. J. Mater. Sci. Technol., 2021, 64(0): 85-98. |
[4] | Huabao Yang, Liang Wu, Bin Jiang, Wenjun Liu, Jiangfeng Song, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62(0): 128-138. |
[5] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
[6] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[7] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
[8] | Ya Zhao, Yonghua Sun, Weiwei Lan, Zhong Wang, Yi Zhang, Di Huang, Xiaohong Yao, Ruiqiang Hang. Self-assembled nanosheets on NiTi alloy facilitate endothelial cell function and manipulate macrophage immune response [J]. J. Mater. Sci. Technol., 2021, 78(0): 110-120. |
[9] | Tao Xiang, Zeyun Cai, Peng Du, Kun Li, Zongwei Zhang, Guoqiang Xie. Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2021, 90(0): 150-158. |
[10] | Zhangweijia Qiu, Zhengkun Li, Huameng Fu, Hongwei Zhang, Zhengwang Zhu, Aimin Wang, Hong Li, Long Zhang, Haifeng Zhang. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46(0): 33-43. |
[11] | Lucas-Granados Bianca, Sánchez-Tovar Rita, M. Fernández-Domene Ramón, María Estívalis-Martínez José, García-Antón José. How does anodization time affect morphological and photocatalytic properties of iron oxide nanostructures? [J]. J. Mater. Sci. Technol., 2020, 38(0): 159-169. |
[12] | Heng Chen, Zebang He, Lin Lu. Correlation of surface features with corrosion behaviors of interstitial free steel processed by temper rolling [J]. J. Mater. Sci. Technol., 2020, 36(0): 37-44. |
[13] | Chunduo Dai, Tianliang Zhao, Cuiwei Du, Zhiyong Liu, Dawei Zhang. Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 46(0): 64-73. |
[14] | Jing Liu, Lixin Yang, Chunyan Zhang, Bo Zhang, Tao Zhang, Yang Li, Kaiming Wu, Fuhui Wang. Significantly improved corrosion resistance of Mg-15Gd-2Zn-0.39Zr alloys: Effect of heat-treatment [J]. J. Mater. Sci. Technol., 2019, 35(8): 1644-1654. |
[15] | Fuliang Ma, Jinlong Li, Zhixiang Zeng, Yimin Gao. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel [J]. J. Mater. Sci. Technol., 2019, 35(3): 448-459. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||