J. Mater. Sci. Technol. ›› 2022, Vol. 119: 245-256.DOI: 10.1016/j.jmst.2021.11.050
• Research Article • Previous Articles
Tianqi Guo, Sašo Ivanovski(), Karan Gulati(
)
Received:
2021-09-10
Revised:
2021-10-20
Accepted:
2021-11-06
Published:
2022-08-20
Online:
2022-08-17
Contact:
Sašo Ivanovski,Karan Gulati
About author:
k.gulati@uq.edu.au (K. Gulati).Tianqi Guo, Sašo Ivanovski, Karan Gulati. Fresh or aged: Short time anodization of titanium to understand the influence of electrolyte aging on titania nanopores[J]. J. Mater. Sci. Technol., 2022, 119: 245-256.
Fig. 1. Schematic representation of electrochemical anodization of micro-rough titanium using various aged electrolytes (fresh, 15 h aged and 30 h aged) for short durations (10-600 s). Time of anodization and age of electrolyte dictates the formation of TiO2 nanopores (stability, alignment and dimensions).
Fig. 2. Characterization of fresh and aged electrolytes. (A) conductivity, (B) pH, (C) Ti ion concentration and (D) free F- ions concentration. *Significantly different as compared to fresh electrolyte.
Fig. 3. SEM images showing topography of titania nanopores (TNPs) fabricated using various electrolyte ages at 60 V for different times. Results showed that fresh (0 h) electrolyte enabled TNPs fabrication at 10 s (A), but no significant nanostructures were formed on anodization by aged electrolyte until 120 s (B,C, E,F, H,I). On fresh electrolyte (0 h) anodized TNPs, cracks started to form at 300 s and significantly compromised its stability at 600 s (M, P). TNPs fabricated using aged electrolytes (15 h and 30 h) remained stable between 120 s and 600 s anodization (K, L, N, O, Q, R).
Anodization time (s) | Surface characteristics | Pore diameter (nm) | Porosity (%) | Roughness | |
---|---|---|---|---|---|
Sq (nm) | Sa (nm) | ||||
Fresh (0 h) electrolyte | |||||
10 | Aligned TNPs | 36.07±9.63 | 6.53±0.69 | 35.37±9.28 | 29.54±9.53 |
30 | 36.90±9.76 | 7.22±1.06 | 38.81±10.11 | 31.25±8.36 | |
60 | 41.75±10.06* | 7.20±2.42 | 38.17±10.35 | 29.44±7.89 | |
120 | 62.20±10.74* | 9.48±2.03* | 48.81±7.30* | 40.01±6.33* | |
300 | Cracks | 35.75±6.26 | 6.25±1.00 | 42.23±12.21 | 31.16±6.33 |
600 | 36.94±9.37 | 6.04±0.52 | 47.48±8.79* | 36.66±5.04* | |
15 h aged electrolyte | |||||
10 | No Nanopores | N/A | N/A | 29.93±10.75 | 20.96±6.67 |
30 | 34.29±7.24 | 27.66±3.95 | |||
60 | 36.09±13.37 | 28.28±11.18 | |||
120 | Aligned TNPs | 32.17±6.77 | 3.70±0.77 | 45.61±7.38* | 35.97±7.81* |
300 | 41.51±8.76# | 5.18±0.50# | 58.81±8.01* | 47.89±6.73* | |
600 | 47.49±7.93# | 7.38±0.42# | 64.57±9.05* | 51.54±6.53* | |
30 h aged electrolyte | |||||
10 | No Nanopores | N/A | N/A | 31.42±5.27 | 22.67±3.76 |
30 | 27.06±7.09 | 21.22±5.18 | |||
60 | 32.66±11.60 | 23.70±8.41 | |||
120 | Aligned TNPs | 27.10±5.45 | 2.84±0.48 | 46.18±11.13* | 36.31±8.86* |
300 | 36.46±7.85# | 4.41±0.35# | 47.36±6.00* | 37.05±5.55* | |
600 | 36.70±5.81# | 4.85±0.50# | 63.07±7.48* | 51.47±6.21* |
Table 1. Topographical characteristics of titania nanopores (TNPs) anodized by different aged electrolytes for various anodization times. *: Significant difference with the 10 s-anodized samples by the same electrolyte. #: Significant difference with the 120 s-anodized samples by the same electrolyte (only presented for the pore diameters and porosity rates of 15 h/30 h anodized TNPs).
Anodization time (s) | Surface characteristics | Pore diameter (nm) | Porosity (%) | Roughness | |
---|---|---|---|---|---|
Sq (nm) | Sa (nm) | ||||
Fresh (0 h) electrolyte | |||||
10 | Aligned TNPs | 36.07±9.63 | 6.53±0.69 | 35.37±9.28 | 29.54±9.53 |
30 | 36.90±9.76 | 7.22±1.06 | 38.81±10.11 | 31.25±8.36 | |
60 | 41.75±10.06* | 7.20±2.42 | 38.17±10.35 | 29.44±7.89 | |
120 | 62.20±10.74* | 9.48±2.03* | 48.81±7.30* | 40.01±6.33* | |
300 | Cracks | 35.75±6.26 | 6.25±1.00 | 42.23±12.21 | 31.16±6.33 |
600 | 36.94±9.37 | 6.04±0.52 | 47.48±8.79* | 36.66±5.04* | |
15 h aged electrolyte | |||||
10 | No Nanopores | N/A | N/A | 29.93±10.75 | 20.96±6.67 |
30 | 34.29±7.24 | 27.66±3.95 | |||
60 | 36.09±13.37 | 28.28±11.18 | |||
120 | Aligned TNPs | 32.17±6.77 | 3.70±0.77 | 45.61±7.38* | 35.97±7.81* |
300 | 41.51±8.76# | 5.18±0.50# | 58.81±8.01* | 47.89±6.73* | |
600 | 47.49±7.93# | 7.38±0.42# | 64.57±9.05* | 51.54±6.53* | |
30 h aged electrolyte | |||||
10 | No Nanopores | N/A | N/A | 31.42±5.27 | 22.67±3.76 |
30 | 27.06±7.09 | 21.22±5.18 | |||
60 | 32.66±11.60 | 23.70±8.41 | |||
120 | Aligned TNPs | 27.10±5.45 | 2.84±0.48 | 46.18±11.13* | 36.31±8.86* |
300 | 36.46±7.85# | 4.41±0.35# | 47.36±6.00* | 37.05±5.55* | |
600 | 36.70±5.81# | 4.85±0.50# | 63.07±7.48* | 51.47±6.21* |
Fig. 5. Change of current density vs time for anodization of Ti using various electrolyte ages. (A) 0-60 s and (B) 0-600 s. SEM images showing the TNP-0h (black frame) and TNP-30h (red frame) at 10 s, 30 s, 120 s and 600 s of EA. Scale bars represent 100 nm.
Fig. 6. The hydrophilicity of various short-time anodized Ti substrates. *: significant difference (p<0.05) with the TNPs by fresh electrolyte at the same EA time. #: significant difference (p<0.05) with the TNPs anodized at 10 s via the same electrolyte. Electrolyte age: 0 h (fresh), 15 h or 30 h; time of anodization: 10-600 s.
Indentation depth (nm) | Young's modulus (GPa) | ||||
---|---|---|---|---|---|
0 h-120 s | 15 h-120 s | 30 h-120 s | 15 h-600 s | 30 h-600 s | |
50 | 86.16±17.72 | 96.26±10.89 | 130.98±15.95* | 58.01±11.42* | 70.91±14.49 |
100 | 87.43±20.07 | 109.10±9.96 | 127.41±8.38* | 57.12±11.72* | 72.06±13.63 |
150 | 87.38±14.75 | 113.78±12.90* | 124.43±11.31* | 58.70±16.59* | 70.01±14.35 |
200 | 88.04±9.48 | 115.23±16.98* | 119.01±7.85* | 58.27±15.42* | 71.83±15.18 |
250 | 93.63±7.64 | 112.08±13.16 | 120.97±17.60* | 58.53±14.20* | 73.23±11.87 |
Indentation depth (nm) | Hardness (GPa) | ||||
0 h-120 s | 15 h-120 s | 30 h-120 s | 15 h-600 s | 30 h-600 s | |
50 | 3.01±0.58 | 2.71±0.52 | 4.77±0.85* | 2.16±0.40* | 3.06±0.37 |
100 | 3.10±0.59 | 3.23±0.31 | 5.25±1.09* | 2.14±0.33* | 2.79±0.35 |
150 | 3.29±0.99 | 3.72±0.18 | 5.14±0.87* | 2.08±0.56* | 2.72±0.77 |
200 | 3.42±0.40 | 4.00±0.51 | 5.03±0.79* | 2.05±0.54* | 2.70±0.64 |
250 | 3.49±0.59 | 4.17±0.44 | 4.85±0.68* | 2.00±0.53* | 2.75±0.62 |
Table 2. Mechanical characteristics (elastic modulus and hardness) of various anodized TNPs. (*, p< 0.05 compared with the 0 h-120 s group at the same indentation depth). Electrolyte age: 0 h (fresh), 15 h or 30 h; time of anodization: 120 s or 600 s.
Indentation depth (nm) | Young's modulus (GPa) | ||||
---|---|---|---|---|---|
0 h-120 s | 15 h-120 s | 30 h-120 s | 15 h-600 s | 30 h-600 s | |
50 | 86.16±17.72 | 96.26±10.89 | 130.98±15.95* | 58.01±11.42* | 70.91±14.49 |
100 | 87.43±20.07 | 109.10±9.96 | 127.41±8.38* | 57.12±11.72* | 72.06±13.63 |
150 | 87.38±14.75 | 113.78±12.90* | 124.43±11.31* | 58.70±16.59* | 70.01±14.35 |
200 | 88.04±9.48 | 115.23±16.98* | 119.01±7.85* | 58.27±15.42* | 71.83±15.18 |
250 | 93.63±7.64 | 112.08±13.16 | 120.97±17.60* | 58.53±14.20* | 73.23±11.87 |
Indentation depth (nm) | Hardness (GPa) | ||||
0 h-120 s | 15 h-120 s | 30 h-120 s | 15 h-600 s | 30 h-600 s | |
50 | 3.01±0.58 | 2.71±0.52 | 4.77±0.85* | 2.16±0.40* | 3.06±0.37 |
100 | 3.10±0.59 | 3.23±0.31 | 5.25±1.09* | 2.14±0.33* | 2.79±0.35 |
150 | 3.29±0.99 | 3.72±0.18 | 5.14±0.87* | 2.08±0.56* | 2.72±0.77 |
200 | 3.42±0.40 | 4.00±0.51 | 5.03±0.79* | 2.05±0.54* | 2.70±0.64 |
250 | 3.49±0.59 | 4.17±0.44 | 4.85±0.68* | 2.00±0.53* | 2.75±0.62 |
Fig. 7. Protein adhesion capacities of various Ti and anodized Ti surfaces. *: Significant difference (p<0.05) with the non-anodized Rough-Ti/Micro-Ti substrates. TNPs: titania nanopores; electrolyte age: 0 h (fresh), 15 h or 30 h; time of anodization: 120 s or 600 s.
[1] |
T. Guo, K. Gulati, H. Arora, P. Han, B. Fournier, S. Ivanovski, Dent. Mater. 37 (2021) 816-831.
DOI URL |
[2] |
T. Guo, K. Gulati, H. Arora, P. Han, B. Fournier, S. Ivanovski, Acta. Biomater. 124 (2021) 33-49.
DOI URL |
[3] |
W. Li, C. Cao, S. Yin, Prog. Mater. Sci. 110 (2020) 100633.
DOI URL |
[4] |
K. Gulati, A. Santos, D. Findlay, D. Losic, J. Phys. Chem. C 119 (2015) 16033-16045.
DOI URL |
[5] |
A. Jayasree, S. Ivanovski, K. Gulati, J. Control. Release 333 (2021) 521-535.
DOI URL |
[6] |
K. Gulati, S.M. Hamlet, S. Ivanovski, J. Mater. Chem. B 6 (2018) 2677-2689.
DOI PMID |
[7] |
W.Q. Bai, L.L. Li, X.L. Wang, F.F. He, D.G. Liu, G. Jin, J.P. Tu, Surf. Coat. Technol. 266 (2015) 70-78.
DOI URL |
[8] |
S. Anandan, M. Yoon, J. Photochem. Photobiol. C 4 (2003) 5-18.
DOI URL |
[9] |
V.S. Saji, J. Electrochem. Soc. 167 (2020) 121505.
DOI URL |
[10] |
C. Lee, H. Choi, C. Lee, H. Kim, Surf. Coat. Technol. 173 (2003) 192-200.
DOI URL |
[11] |
M. Alsawat, T. Altalhi, K. Gulati, A. Santos, D. Losic, ACS Appl Mater. Interfaces 7 (2015) 28361-28368.
DOI URL |
[12] |
G. Kaur, T. Willsmore, K. Gulati, I. Zinonos, Y. Wang, M. Kurian, S. Hay, D. Losic, A. Evdokiou, Biomaterials 101 (2016) 176-188.
DOI URL |
[13] | K. Gulati, G. Atkins, D. Findlay, D. Losic, in: Proc. SPIE 8812, Biosensing, Nanomedicine VI, 88120C, 11 September 2013. |
[14] |
D. Chopra, K. Gulati, S. Ivanovski, Acta. Biomater. 127 (2021) 80-101.
DOI PMID |
[15] |
K. Gulati, H.-J. Moon, T. Li, P.T. Sudheesh Kumar, S. Ivanovski, Mater. Sci. Eng. C 91 (2018) 624-630.
DOI URL |
[16] |
K. Gulati, T. Li, S. Ivanovski, ACS Biomater, Sci. Eng. 4 (2018) 3125-3131.
DOI URL |
[17] |
T. Sjöström, A.H. Nobbs, B. Su, Mater. Lett. 167 (2016) 22-26.
DOI URL |
[18] |
K. Gulati, S. Maher, S. Chandrasekaran, D.M. Findlay, D. Losic, J. Mater. Chem. B 4 (2016) 371-375.
DOI PMID |
[19] |
Y. Wang, Y. He, Q. Lai, M. Fan, J. Environ. Sci. 26 (2014) 2139-2177.
DOI URL |
[20] | G. Sriram, P. Patil, M.P. Bhat, R.M. Hegde, K.V. Ajeya, I. Udachyan, M.B. Bhavya, M.G. Gatti, U.T. Uthappa, G.M. Neelgund, H.-Y. Jung, T. Altalhi, M.D.Kurkuri Madhuprasad, J. Nanomater. 2016 (2016) 1753574. |
[21] |
Y. Zhang, K. Gulati, Z. Li, P. Di, Y. Liu, Nanomaterials 11 (2021) 2489.
DOI URL |
[22] |
K. Gulati, M. Kogawa, S. Maher, G. Atkins, D. Findlay, D. Losic, in:D. Losic, A. Santos (Eds.), Electrochemically Engineered Nanoporous Materials:Methods, Properties and Applications, Springer International Publishing, Cham, 2015, pp. 307-355, doi: 10.1007/978-3-319-20346-1_10.
DOI |
[23] |
T. Kumeria, J. Yu, M. Alsawat, M.D. Kurkuri, A. Santos, A.D. Abell, D. Losic, Adv. Mater. 27 (2015) 3019-3024.
DOI URL |
[24] |
K. Gulati, H.-J. Moon, P.T.S. Kumar, P. Han, S. Ivanovski, Mater. Sci. Eng. C 112 (2020) 110860.
DOI URL |
[25] |
T. Li, K. Gulati, N. Wang, Z. Zhang, S. Ivanovski, J. Colloid. Interface Sci. 529 (2018) 452-463.
DOI URL |
[26] |
S. Rahman, K. Gulati, M. Kogawa, G.J. Atkins, P. Pivonka, D.M. Findlay, D. Losic, J. Biomed. Mater. Res. A 104 (2016) 714-725.
DOI URL |
[27] |
T. Guo, N.A.K. Oztug, P. Han, S. Ivanovski, K. Gulati, ACS Appl Mater. Interfaces 13 (2021) 7897-7912.
DOI URL |
[28] |
D. Chopra, K. Gulati, S. Ivanovski, ACS Biomater. Sci. Eng. 7 (2021) 3069-3074.
DOI URL |
[29] |
V.S. Saji, T. Kumeria, K. Gulati, M. Prideaux, S. Rahman, M. Alsawat, A. Santos, G.J. Atkins, D. Losic, J. Mater. Chem. B 3 (2015) 7090-7098.
DOI URL |
[30] |
D. Chopra, K. Gulati, S. Ivanovski, Nanomaterials 11 (2021) 868.
DOI URL |
[31] | H. Sopha, L. Hromadko, K. Nechvilova, J.M. Macak, J. Electroanal. Chem. (Lau- sanne) 759 (2015) 122-128. |
[32] | K. Lee, J. Kim, H. Kim, Y. Lee, Y. Tak, D. Kim, P. Schmuki, J. Korean Phys. Soc. 54 (2009) 1027. |
[33] |
T.S. Light, Anal. Chem. 56 (1984) 1138-1142.
DOI URL |
[34] |
L. Borgese, M. Gelfi, E. Bontempi, P. Goudeau, G. Geandier, D. Thiaudière, L.E. Depero, Surf. Coat. Technol. 206 (2012) 2459-2463.
DOI URL |
[35] |
J.M. Macák, H. Tsuchiya, P. Schmuki, Angew. Chem. 44 (2005) 2100-2102.
DOI URL |
[36] |
P. Roy, S. Berger, P. Schmuki, Angew. Chem. 50 (2011) 2904-2939.
DOI URL |
[37] | S.P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. LeClere, G.E. Thompson, J.M. Macak, P. Schmuki, Adv. Mater. 20 (2008) 4135-4139. |
[38] | S. Ono, M. Saito, M. Ishiguro, H. Asoh, J. Electrochem. Soc. 151 (2004) B473. |
[39] |
J.F. Vanhumbeeck, J. Proost, Electrochim. Acta 53 (2008) 6165-6172.
DOI URL |
[40] |
J.M. Macak, K. Sirotna, P. Schmuki, Electrochim. Acta 50 (2005) 3679-3684.
DOI URL |
[41] | M. Paulose, K. Shankar, O.K. Varghese, G.K. Mor, B. Hardin, C.A. Grimes, Nan- otechnology 21 (2010) 389801 -389801. |
[42] |
X. Zhou, N.T. Nguyen, S. Özkan, P. Schmuki, Electrochem. Commun. 46 (2014) 157-162.
DOI URL |
[43] |
J. Proost, J.F. Vanhumbeeck, Q. Van Overmeere, Electrochim. Acta 55 (2009) 350-357.
DOI URL |
[44] |
M. Fan, F.La Mantia, Electrochem. Commun. 37 (2013) 91-95.
DOI URL |
[45] |
Y.R. Smith, R.S. Ray, K. Carlson, B. Sarma, M. Misra, Materials 6 (2013) 2892-2957.
DOI PMID |
[46] |
M. Ye, X. Xin, C. Lin, Z. Lin, Nano Lett. 11 (2011) 3214-3220.
DOI URL |
[47] |
P.J.J. Alvarez, C.K. Chan, M. Elimelech, N.J. Halas, D. Villagrán, Nat. Nanotechnol. 13 (2018) 634-641.
DOI PMID |
[48] | L. Chambrone, J.A. Shibli, C.E. Mercúrio, B. Cardoso, P.M. Preshaw, Clin. Oral. Implants. Res. 26 (2015) 359-370. |
[49] |
N.P. Lang, G.E. Salvi, G. Huynh-Ba, S. Ivanovski, N. Donos, D.D. Bosshardt, Clin. Oral. Implants. Res. 22 (2011) 349-356.
DOI URL |
[50] |
R.N. Wenzel, Ind. Eng. Chem. 28 (1936) 988-994.
DOI URL |
[51] |
Y. Kameya, H. Yabe, Coatings 9 (2019) 547.
DOI URL |
[52] | D. Yamamoto, I. Kawai, K. Kuroda, R. Ichino, M. Okido, A. Seki, Bioinorg. Chem. Appl. 2012 (2012) 495218. |
[53] |
S. Kelly, C. Torres-Verdín, M.T. Balhoff, Phys. Chem. Chem. Phys. 20 (2018) 456-466.
DOI URL |
[54] |
C.-M. Han, H.-E. Kim, Y.-H. Koh, Surf. Coat. Technol. 251 (2014) 226-231.
DOI URL |
[55] |
Y. Li, W. Wang, F. Yu, D. Wang, S. Guan, Y. Li, M. Qi, Mater. Sci. Eng. C 109 (2020) 110610.
DOI URL |
[56] |
M. Jarosz, A. Pawlik, M. Szuwarzy ´nski, M. Jaskuła, G.D. Sulka, Colloids Surf. B: Biointerfaces 143 (2016) 447-454.
DOI URL |
[57] |
T. Li, K. Gulati, N. Wang, Z. Zhang, S. Ivanovski, Mater. Sci. Eng. C 88 (2018) 182-195.
DOI URL |
[58] | H. Hirakata, K. Ito, A. Yonezu, H. Tsuchiya, S. Fujimoto, K. Minoshima, Acta Mater. 58 (2010) 4 956-4 967. |
[59] |
F. Schmidt-Stein, S. Thiemann, S. Berger, R. Hahn, P. Schmuki, Acta Mater. 58 (2010) 6317-6323.
DOI URL |
[60] |
T. Guo, N.A.K. Oztug, P. Han, S. Ivanovski, K. Gulati, Mater. Sci. Eng. C 130 (2021) 112429.
DOI URL |
[61] |
J.Y. Rho, R.B. Ashman, C.H. Turner, J. Biomech. 26 (1993) 111-119.
PMID |
[62] |
T. Guo, K. Gulati, Z. Shen, P. Han, Z. Fan, Sci. Rep. 10 (2020) 5935.
DOI URL |
[63] |
C. Chen, X. Kong, S.-M. Zhang, I.-S. Lee, Appl. Surf. Sci. 334 (2015) 62-68.
DOI URL |
[64] |
T. Guo, N.A.K. Oztug, P. Han, S. Ivanovski, K. Gulati, Appl. Surf. Sci. 570 (2021) 151083.
DOI URL |
[65] |
H.-A. Pan, J.-Y. Liang, Y.-C. Hung, C.-H. Lee, J.-C. Chiou, G.S. Huang, Biomaterials 34 (2013) 841-853.
DOI URL |
[66] | M. Kulkarni, A. Mazare, J. Park, E. Gongadze, M.S. Killian, S. Kralj, K. von der Mark, A.Igli ˇc, P.Schmuki,Acta.Biomater. 45(2016)357-366. |
[1] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[2] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
[3] | Yan Liu, Jinshan Li, Bin Tang, William Yi Wang, Minjie Lai, Lei Zhu, Hongchao Kou. Formation mechanism of γ twins in β-solidified γ-TiAl alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 164-171. |
[4] | MengCheng Deng, Shang Sui, Bo Yao, Liang Ma, Xin Lin, Jing Chen. Microstructure and room-temperature tensile property of Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C with near equiaxed β grain fabricated by laser directed energy deposition technique [J]. J. Mater. Sci. Technol., 2022, 101(0): 308-320. |
[5] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
[6] | Guanpeng Liu, Yulong Li, Ming Yan, Jicai Feng, Jian Cao, Min Lei, Quanwen Liu, Xiaowu Hu, Wenqin Wang, Xuewen Li. Vacuum wetting of Ag/TA2 to develop a novel micron porous Ti with significant biocompatibility and antibacterial activity [J]. J. Mater. Sci. Technol., 2022, 116(0): 180-191. |
[7] | Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao, Ruiqiang Hang. Corrosion behavior, antibacterial ability, and osteogenic activity of Zn-incorporated Ni-Ti-O nanopore layers on NiTi alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 69-78. |
[8] | Min Cheng, Zhengguan Lu, Jie Wu, Ruipeng Guo, Junwei Qiao, Lei Xu, Rui Yang. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98(0): 177-185. |
[9] | Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2022, 98(0): 72-86. |
[10] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
[11] | Qian Wang, Shun Xu, Yajun Zhao, Jean-Sébastien Lecomte, Christophe Schuman. Multi-dimensional morphology of hydride diffusion layer and associated sequential twinning in commercial pure titanium [J]. J. Mater. Sci. Technol., 2022, 103(0): 105-112. |
[12] | Sen Yu, Zhe Yu, Dagang Guo, Hui Zhu, Minghua Zhang, Jianye Han, Zhentao Yu, Yemin Cao, Gui Wang. Enhanced bioactivity and interfacial bonding strength of Ti3Zr2Sn3Mo25Nb alloy through graded porosity and surface bioactivation [J]. J. Mater. Sci. Technol., 2022, 100(0): 137-149. |
[13] | Cong Wu, Qinyang Zhao, Shixing Huang, Yongqing Zhao, Lei Lei, Junqiang Ren, Qiaoyan Sun, Lian Zhou. Deformation mechanisms in a β-quenched Ti-5321 alloy: In-situ investigation related to slip activity, orientation evolution and stress induced martensite [J]. J. Mater. Sci. Technol., 2022, 112(0): 36-48. |
[14] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
[15] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||