J. Mater. Sci. Technol. ›› 2022, Vol. 111: 35-48.DOI: 10.1016/j.jmst.2021.09.036
• Research Article • Previous Articles Next Articles
Yanfang Wanga,b, Xin Lina,b(), Nan Kanga,b,*(
), Zihong Wanga,b, Yuxi Liua,b, Weidong Huanga,b
Received:
2021-07-14
Revised:
2021-08-31
Accepted:
2021-09-01
Published:
2021-11-25
Online:
2021-11-25
Contact:
Xin Lin,Nan Kang
About author:
nan.kang@nwpu.edu.cn (N. Kang).Yanfang Wang, Xin Lin, Nan Kang, Zihong Wang, Yuxi Liu, Weidong Huang. Influence of post-heat treatment on the microstructure and mechanical properties of Al-Cu-Mg-Zr alloy manufactured by selective laser melting[J]. J. Mater. Sci. Technol., 2022, 111: 35-48.
Alloy | Al | Cu | Mg | Mn | Fe | Si | Zr |
---|---|---|---|---|---|---|---|
Zr-2024Al powder | Bal. | 4.44 | 1.37 | 0.77 | 0.09 | 0.08 | 1.30 |
SLMed Zr-2024 | Bal. | 4.43 | 1.31 | 0.76 | 0.10 | 0.07 | 1.31 |
Table 1. Chemical compositions of the powder material and the SLM-processed deposits (wt.%).
Alloy | Al | Cu | Mg | Mn | Fe | Si | Zr |
---|---|---|---|---|---|---|---|
Zr-2024Al powder | Bal. | 4.44 | 1.37 | 0.77 | 0.09 | 0.08 | 1.30 |
SLMed Zr-2024 | Bal. | 4.43 | 1.31 | 0.76 | 0.10 | 0.07 | 1.31 |
Fig. 3. Backscattered electron (BSE) images showing the microstructure of the as-fabricated sample (a), and the solution-treated samples after solution times of 1, 3, 5, 7 and 9 h (b-f), respectively.
Fig. 4. Variation of hardness with aging time for solution treated sample aged at 195 °C (a), for as-fabricated sample aged at 310, 340, 370, and 400 °C (b).
Fig. 5. EBSD map and corresponding grain size distribution in the as-fabricated sample (a); TEM-BF images taken from the ultrafine grains region and selected area diffraction pattern (SADP) of the Al3Zr-L12 particle within Al grain (b); TEM-BF images for the in-situ precipitated second phases during SLM and corresponding HRTEM images taken along [001]Al revealing the secondary Al2CuMg precipitates within the α-Al matrix in the as-fabricated sample (c).
Fig. 6. The equilibrium phase diagram for 2024Al-xZr (wt.%) alloy system (Zr content shown by red dotted line) (a), the variation of precipitated phase content vs. temperature, (b) calculated by Thermal-Calc® software with TTAL7 database. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. TEM-BF image showing the precipitates during after solution treatment and aging (a); HRTEM image taken along [001] revealing the secondary Al3Zr and S′ precipitates within the α-Al matrix (b); TEM-EDS mapping results of the Cu, Mg, Mn, and Zr for the second phase particle marked by the yellow arrows (c). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Element (wt.%) | Al | Cu | Mg | Mn | Zr | Fe | Si |
---|---|---|---|---|---|---|---|
Position A | 50.4 | 47.4 | 0.4 | 0.7 | 0.6 | 0.4 | 0.0 |
Position B | 62.7 | 35.3 | 1.0 | 0.0 | 0.8 | 0.2 | 0.0 |
Table 2. EDX analysis results on the precipitation phases after solution treatment.
Element (wt.%) | Al | Cu | Mg | Mn | Zr | Fe | Si |
---|---|---|---|---|---|---|---|
Position A | 50.4 | 47.4 | 0.4 | 0.7 | 0.6 | 0.4 | 0.0 |
Position B | 62.7 | 35.3 | 1.0 | 0.0 | 0.8 | 0.2 | 0.0 |
Fig. 12. TEM characterizations at equiaxed region of the DA sample. (a) TEM-DF image viewed along the [001]Al zone axis; (b) Atomic resolution HAADF-STEM image of the area in (a); (c) TEM-DF image of the small spherical phase; (d) The selected area diffraction pattern of (c).
Fig. 13. Engineering stress-strain curves (a) and the comparison between tensile properties of the additive manufactured Al-Cu-Mg alloys and those of wrought Al-Cu-Mg alloys (b); lnσ-lnε curves and the fitting curves (c); work-hardening exponent and elastic modulus of the samples (d).
Sample | YS (MPa) | UTS (MPa) | Elongation (%) |
---|---|---|---|
SLMed Zr-2024Al | 376 ± 7 | 441 ± 7 | 14.1 ± 1.4 |
STA Zr-2024Al | 402 ± 9 | 483 ± 37 | 6.9 ± 1.8 |
DA Zr-2024Al | 435 ± 2 | 445 ± 3 | 7.5 ± 0.9 |
Table 3. Tensile properties of the SLM-processed, STA, and DA samples.
Sample | YS (MPa) | UTS (MPa) | Elongation (%) |
---|---|---|---|
SLMed Zr-2024Al | 376 ± 7 | 441 ± 7 | 14.1 ± 1.4 |
STA Zr-2024Al | 402 ± 9 | 483 ± 37 | 6.9 ± 1.8 |
DA Zr-2024Al | 435 ± 2 | 445 ± 3 | 7.5 ± 0.9 |
Fig. 14. HAADF-STEM image taken along [001]Al axis in the STA sample showing precipitation of intragranular Al3Zr-L12 type precipitates with planar faults.
Fig. 15. BF-TEM image (a) in the STA sample; HRTEM image taken along [001] showing the Al3Zr-D023 type and Al2CuMg-S precipitates located at grain boundaries (b); HRTEM image taken from the marked area with blue rectangle revealing the D023-Al3Zr precipitates with planar faults (c); BF-TEM image around grain boundary showing a precipitate-free zone surrounding the grain boundary (d).
[1] |
N.J. Harrison, I. Todd, K. Mumtaz, Acta Mater. 94 (2015) 59-68.
DOI URL |
[2] | Y.J. Lu, S.Q. Wu, Y.L. Gan, T.T. Huang, C.G. Yang, J.J. Lin, J.X. Lin, Opt. Laser Tech- nol. 75 (2015) 197-206. |
[3] |
B. Vrancken, L. Thijs, J.-P. Kruth, J.V. Humbeeck, J. Alloys Compd. 541 (2012) 177-185.
DOI URL |
[4] |
T. Dursun, C. Soutis, Mater. Des. 56 (2014) 862-871.
DOI URL |
[5] | C. Galy, E.L. Guen, E. Lacoste, C. Arvieu, Addit. Manuf. 22 (2018) 165-175. |
[6] |
W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q.S. Wei, C.Z. Yan, Y.S. Shi, Mater. Sci. Eng. A 663 (2016) 116-125.
DOI URL |
[7] |
J.L. Lu, X. Lin, N. Kang, Y. Cao, Q.Z. Wang, W.D. Huang, Mater. Sci. Eng. A 811 (2021) 141089.
DOI URL |
[8] |
R.D. Li, H.B. Zhu, M.B. Wang, C. Chen, T.C. Yuan, Mater. Des. 168 (2019) 107668.
DOI URL |
[9] | J.A. Spittle, A.A. Cushway, Met.Technol. 10 (1983) 6-13. |
[10] |
Z. Tang, F. Vollertsen, Weld. World 58 (2014) 355-366.
DOI URL |
[11] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365-369.
DOI URL |
[12] | Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci.Technol. 65 (2021) 190-201. |
[13] |
Y. Li, B. Hu, B. Liu, A. Nie, Q.F. Gu, J.F. Wang, Q. Li, Acta Mater 187 (2020) 51-65.
DOI URL |
[14] | C.X. Zhao, Y. Li, J. Xu, Q. Luo, Y. Jiang, Q.L. Xiao, Q. Li, J. Mater. Sci.Technol. 94 (2021) 104-112. |
[15] |
M.L. Montero-Sistiaga, R. Mertens, B. Vrancken, X.B. Wang, B.V. Hooreweder, J.P. Kruth, J.V. Humbeeck, J. Mater. Process. Technol. 238 (2016) 437-445.
DOI URL |
[16] |
Q.Y. Tan, J.Q. Zhang, Q. Sun, Z.Q. Fan, G. Li, Y. Yin, Y.G. Liu, M.X. Zhang, Acta Mater. 196 (2020) 1-16.
DOI URL |
[17] | H. Zhang, H.H. Zhu, X.J. Nie, J. Yin, Z.H. Hu, X.Y. Zeng, Scr.Mater. 134 (2017) 6-10. |
[18] |
J.R. Croteau, S. Griffiths, M.D. Rossell, C. Leinenbach, C. Kenel, V. Jansen, D.N. Seidman, D.C. Dunand, Acta Mater. 153 (2018) 35-44.
DOI URL |
[19] |
A.B. Spierings, K. Dawson, T. Heeling, P.J. Uggowitzer, R. Schäublin, F. Palm, K. Wegener, Mater. Des. 115 (2017) 52-63.
DOI URL |
[20] | Z.H. Wang, X. Lin, N. Kang, Y.L. Hu, J. Chen, W.D. Huang, Addit. Manuf. 34 (2020) 101260. |
[21] |
K. Schmidtke, F. Palm, A. Hawkins, C. Emmelmann, Phys. Procedia 12 (2011) 369-374.
DOI URL |
[22] |
Q.B. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A.J. Huang, M. Weyland, L. Bour- geois, X.H. Wu, Acta Mater. 171 (2019) 108-118.
DOI URL |
[23] | Q.B. Jia, P. Rometsch, S. Cao, K. Zhang, X.H. Wu, Mater. Des. 174 (2019) 10775. |
[24] | J. Røyset, N. Ryum, Int.Mater. Rev. 50 (2015) 19-44. |
[25] |
K.L. Taylor, A.H. Sherry, Acta Mater. 60 (2012) 1300-1310.
DOI URL |
[26] |
C. K.S. Moy, M. Weiss, J.H. Xia, G. Sha, S.P. Ringer, Mater. Sci. Eng. A 552 (2012) 48-60.
DOI URL |
[27] | G. Liu, G.J. Zhang, X.D. Ding, J. Sun, K.H. Chen, Metall. Mater. Trans. A 35A (2004) 1725-1734. |
[28] |
M.J. Starink, Int. Mater. Rev. 49 (2004) 191-226.
DOI URL |
[29] |
X.Y. Liu, Q.L. Pan, Z.L. Lu, S.F. Cao, Y.B. He, W.B. Li, Mater. Des. 31 (2010) 4392-4397.
DOI URL |
[30] |
F. Zhang, L.E. Levine, A.J. Allen, C.E. Campbell, A.A. Creuziger, N. Kazantseva, J. Ilavsky, Acta Mater. 111 (2016) 385-398.
DOI PMID |
[31] | K.E. knipling, D.C. Dunand, D.N. Seidman. Metall. Mater. Trans. A 38 (2007) 2552-2563. |
[32] | T.C. Xie, H. Shi, H.B. Wang, Q. Luo, Q. Li, K. Chou, J. Mater. Sci.Technol. 97 (2022) 147-155. |
[33] | Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci.Technol. 44 (2020) 171-190. |
[34] | Y.L. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr.Mater. 193 (2021) 127-131. |
[35] |
Y.P. Pang, D.K. Sun, Q.F. Gu, K. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16 (4) (2016) 2404-2415.
DOI URL |
[36] |
L. Litynska L, D. Abouras, G. Kostorz, J. Dutkiewicz, J. Microsc. 223 (2006) 182-184.
DOI URL |
[37] |
Y.L. Zhao, Z.Q. Yang, Z. Zhang, G.Y. Su, X.L. Ma, Acta Mater. 61 (2013) 1624-1638.
DOI URL |
[38] |
K.E. Knipling, D.C. Dunand, D.N. Seidman, Z. Metallkd. 97 (3) (2006) 246-265.
DOI URL |
[39] | K.E. Knipling, D.C. Dunand, D.N. Seidman. Acta Mater. 56 (2008) 1182-1195. |
[40] |
A.V. Pozdniakov, R.Yu. Barkov, S.M. Amer, V.S. Levchenko, A.D. Kotov, A.V. Mikhaylovskaya, Mater. Sci. Eng. A 758 (2019) 28-35.
DOI URL |
[41] | S.M. Amer, R.Yu. Barkov, O.A. Yakovtseva, I.S. Loginova, A.V. Pozdniakov, Mater. Sci. Tech-lond 36 (2020) 453-459. |
[42] |
S.M. Amer, A.V. Mikhaylovskaya, R.Y. Barkov, A.D. Kotov, A. G. Mochugovskiy, O.A. Yakovtseva, M.V. Glavatskikh, I.S. Loginova, S.V. Medvedeva, A.V. Pozdni- akov, JOM 73 (2021) 3092-3101.
DOI URL |
[43] |
W.C. Wu, Y.J. Wang, J.B. Wang, S.M. Wei, Mater. Sci. Eng. A 608 (2014) 190-198.
DOI URL |
[44] | J. M. Silcock, J. Inst. Met. 89 (1961) 203-210. |
[45] |
L. Kovarik, S.A. Court, H.L. Fraser, M.J. Mills, Acta Mater. 56 (2008) 4804-4815.
DOI URL |
[46] | J.R. Davis, Aluminum and Aluminum Alloys, Material Park, OH, 1993. |
[47] |
Q.B. Jia, F. Zhang, P. Rometsch, J.W. Li, J. Mata, M. Weyland, L. Bourgeois, M. Sui, X.H. Wu, Acta Mater. 193 (2020) 239-251.
DOI URL |
[48] |
R.W. Cooke, R.L. Hexemer, I.W. Donaldson, D.P. Bishop, Powder Metall. 55 (2012) 29-35.
DOI URL |
[49] | J.L. Zhang, J.B. Gao, B. Song, L.J. Zhang, C.J. Han, C. Cai, K. Zhou, Y.S. Shi, Addit. Manuf. 38 (2021) 101829. |
[50] |
P. Wang, C. Gammer, F. Brenne, K.G. Prashanth, R.G. Mendes, M.H. Rümmeli, T. Gemmng, J. Eckert, S. Scudino, Mater. Sci. Eng. A 711 (2018) 562-570.
DOI URL |
[51] |
H. Zhang, H.H. Zhu, T. Qi, Z.H. Hu, X.Y. Zeng, Mater. Sci. Eng. A 656 (2016) 47-54.
DOI URL |
[52] |
X.J. Nie, H. Zhang, H.H. Zhu, Z.H. Hu, L. Ke, X.Y. Zeng, J. Alloys Compd. 764 (2018) 977-986.
DOI URL |
[53] |
Z.P. Zhang, Q. Sun, C.W. Li, W.Z. Zhao, J. Mater. Eng. Perform. 15 (2006) 19-22.
DOI URL |
[54] |
E. Nes, Acta Metall. 20 (1972) 499-506.
DOI URL |
[55] |
K.E. Knipling, D.C. Dimamd, D.N. Seidman, Acta Mater. 56 (2008) 114-127.
DOI URL |
[56] | W.W. Mullins, F.A. Nichols, J. Appl. Phys. 36 (1965) 1826-1835. |
[57] |
A.V. Mikhaylovskaya, A.G. Mochugovskiy, V.S. Levchenko, N.Y. Tabachkova, W. Mufalo, V.K. Portnoy, Mater. Charact. 139 (2018) 30-37.
DOI URL |
[58] |
Y.C. Chen, M.E. Fine, J.R. Weertman, Acta Metall. Mater. 38 (1990) 771-780.
DOI URL |
[59] |
M.S. Zedalis, M.E. Fine, Metall. Trans. A 17 (1986) 2187-2198.
DOI URL |
[60] | S. Griffiths, J.R. Croteau, M.D. Rossell, R. Erni, A.D. Luca, N.Q. Vo, D.C. Dunand, C. Leinenbach. Acta Mater 188 (2020) 192-202. |
[61] |
N. Ryum, Acta Metall 17 (1969) 269-278.
DOI URL |
[62] |
J.D. Robson, P.B. Prangnell, Mater. Sci. Eng. A 352 (2003) 240-250.
DOI URL |
[63] |
Z.H. Jia, J.P. Couzinié, N. Cherdoudi, I. Guillot, L. Arnberg, P. Åsholt, S. Brusethaug, B. Barlas, D. Massinon, Trans. Nonferrous Met. Soc. China 22 (2012) 1860-1865.
DOI URL |
[64] |
I. Samajdar, P. Ratchev, B. Berlinden, D. Schryvers, Intermetallics 6 (1998) 419-425.
DOI URL |
[65] |
K. Song, M. Aindow, Metall. Mater. Trans. A 38 (2007) 1-6.
DOI URL |
[66] |
C.H. Wörner, Scr. Metall. 23 (1989) 1909-1912.
DOI URL |
[67] |
F. Chen, Z.N. Chen, F. Mao, T.M. Wang, Z.Q. Cao, Mater. Sci. Eng. A 625 (2015) 357-368.
DOI URL |
[68] |
T. Shanmugasundaram, M. Heilmaier, B.S. Murty, V.S. Sarma, Mater. Sci. Eng. A 527 (2010) 7821-7825.
DOI URL |
[69] | A.D. Luca, D.C. Dunand, D.N. Seidman. Acta Mater. 144 (2018) 80-91. |
[70] |
Z.H. Wang, X. Lin, N. Kang, J. Chen, Y. Tang, H. Tan, X.B. Yu, H.O. Yang, W.D. Huang, Mater. Sci. Eng. A 802 (2021) 140606.
DOI URL |
[71] |
L.M. Cheng, W.J. Poole, J.D. Embury, D.J. Lloyd, Metall. Mater. Trans. A 34 (2003) 2473-2481.
DOI URL |
[72] | T.H. Courtney, Mechanical Behaviors of Materials, McGraw-Hill, New York, 1990. |
[73] |
S.K. Shaha, F. Czerwinski, W. Kasparzak, D.L. Chen, J. Alloys Compd. 593 (2014) 290-299.
DOI URL |
[74] |
Y.J. Li, X.H. Zeng, W. Blum, Acta Mater 52 (2004) 5009-5018.
DOI URL |
[75] |
C. Genevois, A. Deschamps, A. Denquin, B. Doisneau-cottignies, Acta Mater 53 (2005) 2447-2458.
DOI URL |
[76] |
K.K. Ma, H.M. Wen, T. Hu, T.D. Topping, D. Isheiem, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater 62 (2014) 141-155.
DOI URL |
[77] |
D.B. Seidman, E.A. Marquis, D.C. Dunand, Acta Mater. 50 (2002) 4021-4035.
DOI URL |
[1] | Guhui Gao, Rong Liu, Yusong Fan, Guian Qian, Xiaolu Gui, R.D.K. Misra, Bingzhe Bai. Mechanism of subsurface microstructural fatigue crack initiation during high and very-high cycle fatigue of advanced bainitic steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 142-157. |
[2] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
[3] | H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 226-235. |
[4] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
[5] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
[6] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
[7] | S. Shuang, Q. Yu, X. Gao, Q.F. He, J.Y. Zhang, S.Q. Shi, Y. Yang. Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 197-208. |
[8] | Donghai Li, Binbin Wang, Liangshun Luo, Xuewen Li, Yanjin Xu, BinQiang Li, Diween Hawezy, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 228-244. |
[9] | Y.K. Xiao, H. Chen, Z.Y. Bian, T.T. Sun, H. Ding, Q. Yang, Y. Wu, Q. Lian, Z. Chen, H.W. Wang. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles [J]. J. Mater. Sci. Technol., 2022, 109(0): 254-266. |
[10] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[11] | Jianwen Le, Yuanfei Han, Peikun Qiu, Shaopeng Li, Guangfa Huang, Jianwei Mao, Weijie Lu. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 1-13. |
[12] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
[13] | Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 150-160. |
[14] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[15] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||