J. Mater. Sci. Technol. ›› 2022, Vol. 111: 28-34.DOI: 10.1016/j.jmst.2021.09.040
• Research Article • Previous Articles Next Articles
Zhiyong Liua,b, Wenyuan Shic, Teng Yanga,b,*(
), Zhidong Zhanga,b
Received:2021-06-25
Revised:2021-09-10
Accepted:2021-09-13
Published:2021-11-27
Online:2021-11-27
Contact:
Teng Yang
About author:* Division of Magnetism and Magnetic Materials, Insti- tute of Metal Research Chinese Academy of Sciences, Shenyang, Liaoning, China. E-mail address: yangteng@imr.ac.cn (T. Yang).Zhiyong Liu, Wenyuan Shi, Teng Yang, Zhidong Zhang. Magic angles and flat Chern bands in alternating-twist multilayer graphene system[J]. J. Mater. Sci. Technol., 2022, 111: 28-34.
Fig. 1. (a) A schematic picture of the ATMG: trilayer (left) and quadrilayer (right). (b) The Moiré supercell Brillouin zone of the alternating-twist multilayer graphene. Two large hexagons represent the first Brillouin zones of odd- and even-numbered graphene layers, and the small hexagon is the Moiré Brillouin zone.
| n | θ1 | θ2 | θ3 | θ4 | ||||
|---|---|---|---|---|---|---|---|---|
| Ana. | Num. | Ana. | Num. | Ana. | Num. | Ana. | Num. | |
| 2 | 1.07 | 1.06 | 0.53 | 0.51 | 0.36 | 0.34 | 0.27 | 0.24 |
| 3 | 1.51 | 1.49 | 0.76 | 0.71 | 0.51 | 0.51 | 0.38 | 0.43 |
| 4 | 1.73 | 1.72 | 0.87 | 0.83 | 0.58 | 0.57 | 0.43 | 0.42 |
| 0.66 | 0.65 | 0.33 | 0.31 | 0.22 | 0.22 | 0.17 | 0.15 | |
| 5 | 1.86 | 1.84 | 0.93 | 0.94 | 0.62 | 0.68 | 0.46 | 0.47 |
| 1.07 | 1.06 | 0.53 | 0.59 | 0.36 | 0.35 | 0.27 | 0.28 | |
| 6 | 1.93 | 1.91 | 0.97 | 0.93 | 0.65 | 0.63 | 0.48 | 0.49 |
| 1.34 | 1.32 | 0.67 | 0.63 | 0.44 | 0.40 | 0.33 | 0.27 | |
| 0.48 | 0.47 | 0.23 | 0.22 | 0.22 | 0.15 | 0.12 | 0.12 | |
Table 1. Magic angles of ATMG from numerical calculation ${{u}_{1}}=0.1\text{eV}$ and ${{u}_{2}}=0.1\text{eV}$ and also from analytical calculation by Eq. (11).
| n | θ1 | θ2 | θ3 | θ4 | ||||
|---|---|---|---|---|---|---|---|---|
| Ana. | Num. | Ana. | Num. | Ana. | Num. | Ana. | Num. | |
| 2 | 1.07 | 1.06 | 0.53 | 0.51 | 0.36 | 0.34 | 0.27 | 0.24 |
| 3 | 1.51 | 1.49 | 0.76 | 0.71 | 0.51 | 0.51 | 0.38 | 0.43 |
| 4 | 1.73 | 1.72 | 0.87 | 0.83 | 0.58 | 0.57 | 0.43 | 0.42 |
| 0.66 | 0.65 | 0.33 | 0.31 | 0.22 | 0.22 | 0.17 | 0.15 | |
| 5 | 1.86 | 1.84 | 0.93 | 0.94 | 0.62 | 0.68 | 0.46 | 0.47 |
| 1.07 | 1.06 | 0.53 | 0.59 | 0.36 | 0.35 | 0.27 | 0.28 | |
| 6 | 1.93 | 1.91 | 0.97 | 0.93 | 0.65 | 0.63 | 0.48 | 0.49 |
| 1.34 | 1.32 | 0.67 | 0.63 | 0.44 | 0.40 | 0.33 | 0.27 | |
| 0.48 | 0.47 | 0.23 | 0.22 | 0.22 | 0.15 | 0.12 | 0.12 | |
Fig. 2. The band structures of K valley of the ATMG systems with ${{u}_{1}}=0.1\text{eV}$ and ${{u}_{2}}=0.1\text{eV}$ at first magic angles. (a) Trilayer with twisted angle$\theta ={{1.49}^{\circ }}$; (b) Quadrilayer graphene with twisted angle θ=1.72°; (c) Five layers with twisted angle $\theta ={{1.84}^{\circ }}$ and (d) Six layers with twisted angle $\theta ={{1.91}^{\circ }}$.
Fig. 3. The Chern numbers of the two low-energy flat bands of ATMG on h-BN. (a) and (b) The band structures of alternating-twist trilayer and quadrilayer graphene on h-BN with θ=1.49° and θ=1.72°. (c) and (d) The Chern number of two flat bands of alternating-twist trilayer and quadrilayer graphene on h-BN tuned by gate potential V and twist angle near each magic angle.
| [1] |
Y. Cao, V. Fatemi, A. Demir, S.A. Fang, S.L. Tomarken, J.Y. Luo, J.D. Sanchez- Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R.C. Ashoori, P. Jarillo-Herrero, Nature 556 (2018) 80-84, doi: 10.1038/nature26154.
DOI URL |
| [2] |
A.L. Sharpe, E.J. Fox, A.W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M.A. Kastner, D. Goldhaber-Gordon, Science 365 (2019) 605-608.
DOI PMID |
| [3] | E. Codecido, Q.Y. Wang, R. Koester, S. Che, H.D. Tian, R. Lv, S. Tran, K. Watan- abe, T. Taniguchi, F. Zhang, M. Bockrath, C.N.Lau,Sci.Adv. 5 (2019) 9770. |
| [4] |
K. Alexander, J.M. Leo, M.K. Dante, X. Lede, Y. Matthew, C. Shaowen, K. Watan-abe, T. Taniguchi, H. James, D. Cory, R. Angel, N.P. Abhay, Nature 572 (2019) 95-100.
DOI URL |
| [5] |
Y.L. Xie, B. Lian, B. Jäck, X.M. Liu, Cheng-Li Chiu T. Taniguchi K.Watanabe, B.A. Bernevig, A. Yazdani, Nature 572 (2019) 101-105.
DOI URL |
| [6] |
Y. Cao, V. Fatemi, S.A. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Her-rero, Nature 556 (2018) 43-50.
DOI URL |
| [7] |
X.B. Lu, P. Stepanov, W. Yang, M. Xie, M.A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G.Y. Zhang, A. Bachtold, A.H. MacDonald, D.K. Efetov, Nature 574 (2019) 653-657.
DOI URL |
| [8] |
M. Yankowitz, S.W. Chen, H. Polshyn, Y.X. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A.F. Young, C.R. Dean, Science 363 (2019) 1059-1064.
DOI PMID |
| [9] |
Y.H. Jiang, X.Y. Lai, K. Watanabe, T. Taniguchi, K. Haule, J.H. Mao, E.Y. Andrei, Nature 573 (2019) 91-95.
DOI URL |
| [10] |
Y. Saito, J.Y. Ge, T.Taniguchi K.Watanabe, A.F. Young, Nature Phys 16 (2020) 926-930.
DOI URL |
| [11] |
M. Claassen, D.M. Kennes, M. Zingl, M.A. Sentef, A. Rubio, Nature Phys 15 (2019) 766-770.
DOI URL |
| [12] |
J.M.B. Lopes dos Santos, N.M.R. Peres, A.H. Castro Neto, Phys. Rev. Lett. 99 (2007) 256802.
DOI URL |
| [13] | R. Bistritzer, A.H. MacDonald, Proc. Natl. Acad. Sci, USA 108 (2011) 12233-12237. |
| [14] |
J.M.B. Lopes dos Santos, N.M.R. Peres, A.H. Castro Neto, Phys. Rev. B 86 (2012) 155449.
DOI URL |
| [15] |
P. Moon, M. Koshino, Phys. Rev. B 87 (2013) 205404.
DOI URL |
| [16] | H.C. Po, L.J. Zou, A. Vishwanath, T. Senthil. Phys. Rev. X 8 (2018) 031089. |
| [17] | M. Koshino, Noah F. Q. Yuan, T. Koretsune, M. Ochi, K. Kuroki, L. Fu, Phys. Rev. X 8 (2018) 031087. |
| [18] | J. Kang, O. Vafek, Phys. Rev. X 8 (2018) 031088. |
| [19] |
M. Xie, A.H. MacDonald, Phys. Rev. Lett. 124 (2020) 097601.
DOI URL |
| [20] |
J. Kang, O. Vafek, Phys. Rev. Lett. 122 (2019) 246401.
DOI URL |
| [21] |
X.Y. Xu, K.T. Law, P.A. Lee, Phys. Rev. B 98 (2018) 121406.
DOI URL |
| [22] | H. Isobe, Noah F. Q. Yuan, L. Fu, Phys. Rev. X 8 (2018) 041041. |
| [23] |
F.C. Wu, A.H. MacDonald, I. Martin, Phys. Rev. Lett. 121 (2018) 257001.
DOI URL |
| [24] |
B. Lian, Z.J. Wang, B.A. Bernevig, Phys. Rev. Lett. 122 (2019) 257002.
DOI URL |
| [25] |
F.C. Wu, Phys. Rev. B 99 (2019) 195114.
DOI URL |
| [26] |
V. Kozii, H. Isobe, Jörn W. F. Venderbos, L. Fu, Phys. Rev. B 99 (2019) 144507.
DOI URL |
| [27] |
C.C. Liu, L.D. Zhang, W.Q. Chen, F. Yang, Phys. Rev. Lett. 121 (2018) 217001.
DOI URL |
| [28] |
D.V. Chichinadze, L. Classen, A.V. Chubukov, Phys. Rev. B 101 (2020) 224513.
DOI URL |
| [29] | T. Wang, Noah F. Q. Yuan, L. Fu, Phys. Rev. X 11 (2021) 021024. |
| [30] | E. Khalaf, S. Chatterjee, N. Bultinck, M.P. Zaletel, A. Vishwanath, Sci. Adv. 7 (2021) 5299. |
| [31] |
J. González, T. Stauber, Phys. Rev. Lett. 122 (2019) 026801.
DOI URL |
| [32] |
G. Tarnopolsky, A.J. Kruchkov, A. Vishwanath, Phys. Rev. Lett. 122 (2019) 106405.
DOI URL |
| [33] |
Y.F. Ren, Q. Gao, A.H. MacDonald, Q. Niu, Phys. Rev. Lett. 126 (2021) 016404.
DOI URL |
| [34] |
H.C. Po, L.J. Zou, T. Senthil, A. Vishwanath, Phys. Rev. B 99 (2019) 195455.
DOI URL |
| [35] |
Z.D. Song, Z.J. Wang, W.J. Shi, G. Li, C. Fang, B.A. Bernevig, Phys. Rev. Lett. 123 (2019) 036401.
DOI URL |
| [36] | J. Ahn, S. Park, B.J. Yang, Phys. Rev. X 9 (2019) 021013. |
| [37] |
J.P. Liu, J.W. Liu, X. Dai, Phys. Rev. B 99 (2019) 155415.
DOI URL |
| [38] |
K. Hejazi, C.X. Liu, H. Shapourian, X. Chen, L. Balents, Phys. Rev. B 99 (2019) 035111.
DOI URL |
| [39] |
Y. Zhang, K. Jiang, Z.Q. Wang, F.C. Zhang, Phys. Rev. B 102 (2020) 035136.
DOI URL |
| [40] |
J.P. Liu, X. Dai, Phys. Rev. B 103 (2021) 035427.
DOI URL |
| [41] |
N. Bultinck, S. Chatterjee, M.P. Zaletel, Phys. Rev. Lett. 124 (2020) 166601.
DOI URL |
| [42] | N. Bultinck, E. Khalaf, S. Liu, S. Chatterjee, A. Vishwanath, M.P. Zaletel, Phys. Rev. X 10 (2020) 031034. |
| [43] |
J.T. Shi, J.H. Zhu, A.H. MacDonald, Phys. Rev. B 103 (2021) 075122.
DOI URL |
| [44] | S. Liu, E. Khalaf, J.Y. Lee, and A. Vishwanath, “Nematic topological semimetal and insulator in magic angle bilayer graphene at charge neutrality,”arXiv: 1905. 07409 [cond-mat.str-el]. |
| [45] |
C. Shen, Y.B. Chu, Q.S. Wu, N. Li, S.P. Wang, Y.C. Zhao, J. Tang, J.Y. Liu, J.P. Tian, K. Watanabe, T. Taniguchi, R. Yang, Z.Y. Meng, D.X. Shi, O.V. Yazyev, G.Y. Zhang, Nature Phys 16 (2020) 520-525.
DOI URL |
| [46] |
X.M. Liu, Z.Y. Hao, E. Khalaf, J.Y. Lee, Y. Ronen, H. Yoo, D.H. Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, P. Kim, Nature 583 (2020) 221-225.
DOI URL |
| [47] |
Y. Cao, D. Rodan-Legrain, O. Rubies-Bigorda, J.M. Park, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, Nature 583 (2020) 215-220.
DOI URL |
| [48] |
G.R. Chen, A.L. Sharpe, E.J. Fox, Y.H. Zhang, S.X. Wang, L.L. Jiang, B.S. Lyu, H.Y. Li, K. Watanabe, T. Taniguchi, Z.W. Shi, T. Senthil, D. Goldhaber- Gordon, Y.B. Zhang, F. Wang, Nature 579 (2020) 56-61.
DOI URL |
| [49] | G.R. Chen, L.L. Jiang, S. Wu, B.S. Lyu, H.Y. Li, B.L. Chittari, K. Watanabe, T. Taniguchi, Z.W. Shi, J. Jung, Y.B. Zhang, F. Wang, Nature Phys 15 (2019) 327. |
| [50] |
G.R. Chen, A.L. Sharpe, P. Gallagher, I.T. Rosen, E.J. Fox, L.L. Jiang, B.S. Lyu, H.Y. Li, K. Watanabe, T. Taniguchi, J. Jung, Z.W. Shi, D. Goldhaber-Gordon, Y.B. Zhang, F. Wang, Nature 572 (2019) 215-219.
DOI URL |
| [51] |
Y.H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, T. Senthil, Phys. Rev. B 99 (2019) 075127.
DOI URL |
| [52] |
M. Koshino, Phys. Rev. B 99 (2019) 235406.
DOI URL |
| [53] | J.P. Liu, Z. Ma, J.H. Gao, X. Dai, Phys. Rev. X 9 (2019) 031021. |
| [54] |
M. Brzhezinskaya, O. Kononenko, V. Matveev, A. Zotov, I.I. Khodos, V. Levashov, V. Volkov, S.I. Bozhko, S.V. Chekmazov, D. Roshchupkin, ACS Nano 15 (2021) 12358.
DOI URL |
| [55] |
Z.Y. Hao, A.M. Zimmerman, P. Ledwith, E. Khalaf, D. Haie-Najafabadi, K. Watan- abe, T. Taniguchi, A. Vishwanath, P. Kim, Nature 590 (2021) 249-255.
DOI URL |
| [56] |
E. Khalaf, A.J. Kruchkov, G. Tarnopolsky, A. Vishwanath, Phys. Rev. B 100 (2019) 085109.
DOI URL |
| [57] | A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim,Rev. Mod. Phys. 81 (2009) 109-162. |
| [58] |
J.P. Liu, X. Dai, Acta. Phys. Sin. 69 (2020) 147301.
DOI URL |
| [1] | Shin-Ichiro Fujita, Shinji Segawa, Kazuki Kawashima, Xuejing Nie, Tomoki Erata, Masahiko Arai. One-Pot Room-Temperature Synthesis of Mg Containing MCM-41 Mesoporous Silica for Aldol Reactions [J]. J. Mater. Sci. Technol., 2018, 34(12): 2521-2528. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
