J. Mater. Sci. Technol. ›› 2022, Vol. 109: 254-266.DOI: 10.1016/j.jmst.2021.08.030
• Research Article • Previous Articles Next Articles
Y.K. Xiaoa, H. Chena, Z.Y. Biana, T.T. Suna, H. Dinga, Q. Yanga, Y. Wub,*(), Q. Lianb, Z. Chenb,*(
), H.W. Wangb
Received:
2021-06-11
Revised:
2021-07-11
Accepted:
2021-08-02
Published:
2022-05-20
Online:
2021-11-09
Contact:
Y. Wu,Z. Chen
About author:
zhe.chen@sjtu.edu.cn (Z. Chen).Y.K. Xiao, H. Chen, Z.Y. Bian, T.T. Sun, H. Ding, Q. Yang, Y. Wu, Q. Lian, Z. Chen, H.W. Wang. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles[J]. J. Mater. Sci. Technol., 2022, 109: 254-266.
Fig. 1. Typical SEM images of the morphology of (a) AlSi10Mg alloy powders, (b-d) 2% TiB2/AlSi10Mg composite powders; (e) particle size distribution and (f) sphericity distribution of 2% TiB2/AlSi10Mg composite powders. Yellow arrows in (c, d) point to the TiB2 particles on the surface of the powder.
Powders | Chemical composition (wt.%) | ||||||
---|---|---|---|---|---|---|---|
Si | Mg | Cu | Fe | Ti | B | Al | |
AlSi10Mg alloy | 9.80 | 0.316 | 0.027 | 0.091 | - | - | Bal. |
0.5% TiB2/AlSi10Mg | 9.82 | 0.317 | 0.014 | 0.071 | 0.347 | 0.158 | Bal. |
2% TiB2/AlSi10Mg | 9.93 | 0.319 | 0.024 | 0.079 | 1.287 | 0.588 | Bal. |
5% TiB2/AlSi10Mg | 9.81 | 0.314 | 0.025 | 0.065 | 3.455 | 1.727 | Bal. |
8% TiB2/AlSi10Mg | 9.98 | 0.312 | 0.032 | 0.083 | 5.445 | 2.702 | Bal. |
Table 1. Chemical compositions of AlSi10Mg alloy and x%TiB2/AlSi10Mg composite powders.
Powders | Chemical composition (wt.%) | ||||||
---|---|---|---|---|---|---|---|
Si | Mg | Cu | Fe | Ti | B | Al | |
AlSi10Mg alloy | 9.80 | 0.316 | 0.027 | 0.091 | - | - | Bal. |
0.5% TiB2/AlSi10Mg | 9.82 | 0.317 | 0.014 | 0.071 | 0.347 | 0.158 | Bal. |
2% TiB2/AlSi10Mg | 9.93 | 0.319 | 0.024 | 0.079 | 1.287 | 0.588 | Bal. |
5% TiB2/AlSi10Mg | 9.81 | 0.314 | 0.025 | 0.065 | 3.455 | 1.727 | Bal. |
8% TiB2/AlSi10Mg | 9.98 | 0.312 | 0.032 | 0.083 | 5.445 | 2.702 | Bal. |
Fig. 2. Hierarchical microstructures observed from the side view of SLMed AlSi10Mg alloy: (a) EBSD inverse pole figure (IPF) map; (b, c) local magnification and corresponding grain boundaries maps (HAGBs, black lines; LAGBs, red lines) of the white rectangle area in (a); (d) SEM image of same area in (a); (e) local magnification SEM image of white rectangle area in (d) (same area of (b)); (f) local magnification SEM image of white rectangle area in (e). The white dash line in (b) denotes the melting pool. Black arrows in (d, e) point to holes.
Fig. 3. The microstructures observed from the side view of SLMed x%TiB2/AlSi10Mg composites: (a-c) 0.5% TiB2/AlSi10Mg, where (b) and (c) are local magnifications and corresponding grain boundaries maps of the white rectangle area in (a); (d-f) 2% TiB2/AlSi10Mg, where (e) and (f) are local magnification and corresponding grain boundaries maps of the white rectangle area in (d); (g) 5% TiB2/AlSi10Mg, (h) 8% TiB2/AlSi10Mg; (i) the variation of average grain diameter with different TiB2 particle contents, and the inset is the corresponding grain aspect ratio evolution. The superposed blue colored pixels in (c, f) refer to TiB2 particles.
Fig. 4. SEM images of SLMed x%TiB2/AlSi10Mg composites from the side view: (a) 0.5% TiB2/AlSi10Mg, (b) over etched 2% TiB2/AlSi10Mg; TEM results of SLMed 5% TiB2/AlSi10Mg composite: (c) BF image, and the inset is the corresponding EDX map of Si element; (d) BF image in high magnification, and the inset is the corresponding SAED image; Yellow arrows in (b, d) point to nano-TiB2 particles.
Fig. 6. The {100} pole figures of AlSi10Mg and x%TiB2/AlSi10Mg composites: (a) AlSi10Mg, (b) 0.5% TiB2/AlSi10Mg, (c) 2% TiB2/AlSi10Mg, (d) 5% TiB2/AlSi10Mg, (e) 8% TiB2/AlSi10Mg.
Sample | YS (MPa) | UTS (MPa) | UE (%) | Microhardness (HV10) |
---|---|---|---|---|
AlSi10Mg alloy | 270.1 ± 4.3 | 430.7 ± 1.6 | 4.7 ± 0.4 | 125.9 ± 1.4 |
0.5%TiB2/AlSi10Mg | 317.6 ± 2.1 | 484.1 ± 3.3 | 9.5 ± 0.3 | 140.5 ± 1.3 |
2%TiB2/AlSi10Mg | 320.1 ± 3.2 | 500.7 ± 3.5 | 12.7 ± 0.2 | 147.1 ± 1.5 |
5%TiB2/AlSi10Mg | 323.7 ± 1.9 | 522.9 ± 3.6 | 8.7 ± 0.5 | 151.1 ± 2.1 |
8%TiB2/AlSi10Mg | 340.8 ± 1.7 | 544.4 ± 2.6 | 6.2 ± 0.2 | 161.5 ± 2.5 |
Table 2. Mechanical properties of the SLMed AlSi10Mg alloy and x%TiB2/AlSi10Mg composites.
Sample | YS (MPa) | UTS (MPa) | UE (%) | Microhardness (HV10) |
---|---|---|---|---|
AlSi10Mg alloy | 270.1 ± 4.3 | 430.7 ± 1.6 | 4.7 ± 0.4 | 125.9 ± 1.4 |
0.5%TiB2/AlSi10Mg | 317.6 ± 2.1 | 484.1 ± 3.3 | 9.5 ± 0.3 | 140.5 ± 1.3 |
2%TiB2/AlSi10Mg | 320.1 ± 3.2 | 500.7 ± 3.5 | 12.7 ± 0.2 | 147.1 ± 1.5 |
5%TiB2/AlSi10Mg | 323.7 ± 1.9 | 522.9 ± 3.6 | 8.7 ± 0.5 | 151.1 ± 2.1 |
8%TiB2/AlSi10Mg | 340.8 ± 1.7 | 544.4 ± 2.6 | 6.2 ± 0.2 | 161.5 ± 2.5 |
Fig. 7. (a) The tensile stress-strain curves of the SLMed AlSi10Mg alloy and x%TiB2/AlSi10Mg composites; (b) comparison of the tensile properties in the present study with other SLMed AlSi10Mg alloy and composites reported in the literatures [[21], [22], [23], [24], [25], [26], [27], [28],[36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48]].
Fig. 8. Schematic diagrams illustrating the formation of grains during the solidification in melting pool of (a) AlSi10Mg alloy and (b) TiB2/AlSi10Mg composites; (c) The schematic diagram illustrating the interatomic spacing misfit and the interplanar spacing mismatch between TiB2 and Al.
Fig. 9. Quantitative characterization on dislocation density for SLMed AlSi10Mg alloy and TiB2/AlSi10Mg composites (2% and 5%) by synchrotron radiation XRD. (a) The diffraction peaks of the samples, (b) normalized peaks for the samples, (c) dislocation densities for three samples.
Fig. 11. The variations of work hardening rate and true stress versus strain of SLMed AlSi10Mg alloy and composites: (a) AlSi10Mg, (b) 0.5% TiB2/AlSi10Mg, (c) 2% TiB2/AlSi10Mg, (d) 5% TiB2/AlSi10Mg.
Fig. 12. Fracture surface of SLMed AlSi10Mg alloy and composites: (a) AlSi10Mg, (b) 0.5% TiB2/AlSi10Mg, (c) 2% TiB2/AlSi10Mg, (d) 5% TiB2/AlSi10Mg; (a1-d1) and (a2-d2) are the magnified images of the fracture surface.
[1] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[2] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater 117 (2016) 371-392.
DOI URL |
[3] |
D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57 (2012) 133-164.
DOI URL |
[4] |
E. MacDonald, R. Wicker, Science 353 (2016) aaf2093-aaf2093.
DOI URL |
[5] |
J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, CIRP Annals 56 (2007) 730-759.
DOI URL |
[6] |
W.E. Frazier, J. Mater. Eng. Perform. 23 (2014) 1917-1928.
DOI URL |
[7] |
L. Thijs, K. Kempen, J.-.P. Kruth, J. Van Humbeeck, Acta Mater 61 (2013) 1809-1819.
DOI URL |
[8] |
N.T. Aboulkhair, Prog. Mater. Sci. 106 (2019) 100578.
DOI URL |
[9] |
R.S. Mishra, S. Thapliyal, Mater. Des. 204 (2021) 109640.
DOI URL |
[10] |
Y. Morris Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17 (2017) 63-71.
DOI URL |
[11] |
Z. Li, B. He, Q. Guo, Scr. Mater. 177 (2020) 17-21.
DOI URL |
[12] |
L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, J.P. Kruth, Acta Mater 58 (2010) 3303-3312.
DOI URL |
[13] |
E.O. Olakanmi, J. Mater. Process. Technol. 213 (2013) 1387-1405.
DOI URL |
[14] |
J.P. Oliveira, A.D. LaLonde, J. Ma, Mater. Des. 193 (2020) 108762.
DOI URL |
[15] |
H. Wang, Y. Kawahito, R. Yoshida, Y. Nakashima, K. Shiokawa, Opt. Lett. 42 (2017) 2251.
DOI URL |
[16] |
W.H. Yu, S.L. Sing, C.K. Chua, C.N. Kuo, X.L. Tian, Prog. Mater. Sci. 104 (2019) 330-379.
DOI |
[17] |
Q. Han, R. Setchi, F. Lacan, D. Gu, S.L. Evans, Mater. Sci. Eng. A 698 (2017) 162-173.
DOI URL |
[18] |
Q. Han, Y. Geng, R. Setchi, F. Lacan, D. Gu, S.L. Evans, Compos. Part B: Eng. 127 (2017) 26-35.
DOI URL |
[19] |
X. Li, C. Kong, T. Becker, T. Sercombe, Adv. Eng. Mater. 18 (2016) 1337-1341.
DOI URL |
[20] |
Y. Zhou, L. Duan, S. Wen, Q. Wei, Y. Shi, Compos. Commun. 10 (2018) 64-67.
DOI URL |
[21] |
D. Gu, H. Wang, D. Dai, P. Yuan, W. Meiners, R. Poprawe, Scr. Mater. 96 (2015) 25-28.
DOI URL |
[22] | C. Gao, W. Wu, J. Shi, Z. Xiao, A.H. Akbarzadeh, Addit. Manuf. 34 (2020) 101378. |
[23] | Q. Tan, J. Zhang, N. Mo, Z. Fan, Y. Yin, M. Bermingham, Y. Liu, H. Huang, M.X. Zhang, Addit. Manuf. 32 (2020) 101034. |
[24] |
L.Y. Jiang, T.T. Liu, C.D. Zhang, K. Zhang, M.C. Li, T. Ma, W.H. Liao, Mater. Sci. Eng. A 734 (2018) 171-177.
DOI URL |
[25] |
Z. Zhao, P. Bai, R.D.K. Misra, M. Dong, R. Guan, Y. Li, J. Zhang, L. Tan, J. Gao, T. Ding, W. Du, Z. Guo, J. Alloys Compd. 792 (2019) 203-214.
DOI URL |
[26] |
Y. Liu, R. Wang, C. Peng, Z. Cai, Z. Zhou, X. Li, X. Cao, J. Alloys Compd. 853 (2021) 157287.
DOI URL |
[27] |
Y. Li, D. Gu, H. Zhang, L. Xi, Chin. J. Mech. Eng. 33 (2020) 33.
DOI URL |
[28] |
A. Aversa, G. Marchese, M. Lorusso, F. Calignano, S. Biamino, E.P. Ambro-sio, D. Manfredi, P. Fino, M. Lombardi, M. Pavese, Adv. Eng. Mater. 19 (2017) 1700180.
DOI URL |
[29] |
X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, J.P. Kruth, Acta Mater 129 (2017) 183-193.
DOI URL |
[30] |
Y. Xiao, Z.Y. Bian, Y. Wu, G. Ji, Y.Q. Li, M.J. Li, Q. Lian, Z. Chen, A. Addad, H.W. Wang, J. Alloys Compd. 798 (2019) 644-655.
DOI URL |
[31] |
Y.K. Xiao, Q. Yang, Z.Y. Bian, H. Chen, Y. Wu, Q. Lian, Z. Chen, H.W. Wang, Mater. Sci. Eng. A 809 (2021) 140951.
DOI URL |
[32] |
P. Wang, C. Gammer, F. Brenne, T. Niendorf, J. Eckert, S. Scudino, Compos. Part B: Eng. 147 (2018) 162-168.
DOI URL |
[33] |
L.X. Xi, H. Zhang, P. Wang, H.C. Li, K.G. Prashanth, K.J. Lin, I. Kaban, D.D. Gu, Ceram. Int. 44 (2018) 17635-17642.
DOI URL |
[34] |
M. Chen, X. Li, G. Ji, Y. Wu, Z. Chen, W. Baekelant, K. Vanmeensel, H. Wang, J.P. Kruth, Appl. Sci. 7 (2017) 250.
DOI URL |
[35] |
Y. Tang, Z. Chen, A. Borbély, G. Ji, S.Y. Zhong, D. Schryvers, V. Ji, H.W. Wang, Mater. Charact. 102 (2015) 131-136.
DOI URL |
[36] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365-369.
DOI URL |
[37] |
N. Read, W. Wang, K. Essa, M.M. Attallah, Mater. Des. 65 (2015) 417-424.
DOI URL |
[38] |
J. Delahaye, J.T. Tchuindjang, J. Lecomte-Beckers, O. Rigo, A.M. Habraken, A. Mertens, Acta Mater 175 (2019) 160-170.
DOI |
[39] |
Q. Liu, H. Wu, M.J. Paul, P. He, Z. Peng, B. Gludovatz, J.J. Kruzic, C.H. Wang, X. Li, Acta Mater 201 (2020) 316-328.
DOI URL |
[40] | A. Hadadzadeh, C. Baxter, B.S. Amirkhiz, M. Mohammadi, Addit. Manuf. 23 (2018) 108-120. |
[41] |
P. Wei, Z. Wei, Z. Chen, J. Du, Y. He, J. Li, Y. Zhou, Appl. Surface Sci. 408 (2017) 38-50.
DOI URL |
[42] |
U. Tradowsky, J. White, R.M. Ward, N. Read, W. Reimers, M.M. Attallah, Mater. Des. 105 (2016) 212-222.
DOI URL |
[43] | K. Kempen, L. Thijs, J. Van Humbeeck, J.P. Kruth, Phys. Proc. 39 (2012) 439-446. |
[44] |
H. Asgari, C. Baxter, K. Hosseinkhani, M. Mohammadi, Mater. Sci. Eng. A 707 (2017) 148-158.
DOI URL |
[45] |
A. Hadadzadeh, B.S. Amirkhiz, M. Mohammadi, Mate. Sci. Eng. A 739 (2019) 295-300.
DOI URL |
[46] | Z. Li, Z. Li, Z. Tan, D.B. Xiong, Q. Guo, Int. J. Plasticity 137 (2019) 102640. |
[47] | N.D. Parab, Addit. Manuf. 30 (2019) 100878. |
[48] |
M. Fousová, D. Dvorský, A. Michalcová, D. Vojtěch, Mater. Charact. 137 (2018) 119-126.
DOI URL |
[49] |
M.N. Patel, D. Qiu, G. Wang, M.A. Gibson, A. Prasad, D.H. StJohn, M.A. Easton, Scr. Mater. 178 (2020) 447-451.
DOI URL |
[50] | J.D. Hunt, Mater. Sci. Eng. 65 (1984) 75-83. |
[51] | D. Turnbull, B. Vonnegut, Ind. Eng. Chem. 44 (2021) 7. |
[52] |
Y. Ma, A. Addad, G. Ji, M.X. Zhang, W. Lefebvre, Z. Chen, V. Ji, Acta Mater 185 (2020) 287-299.
DOI URL |
[53] | M.X. Zhang, P.M. Kelly, Prog. Mater. Sc. 54 (2009) 1101-1170. |
[54] |
D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Acta Mater 59 (2011) 4907-4921.
DOI URL |
[55] |
Q. Tan, Y. Yin, Z. Fan, J. Zhang, Y. Liu, M.X. Zhang, Mater. Sc. Eng A 800 (2021) 140365.
DOI URL |
[56] |
K. Wang, H.Y. Jiang, Y.W. Jia, H. Zhou, Q.D. Wang, B. Ye, W.J. Ding, Acta Mater 103 (2016) 252-263.
DOI URL |
[57] | E.O. Hall, Proc. Phys. Soc. Sect. B 64 (1951) 747-753. |
[58] |
G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nat. Mater. 12 (2013) 344-350.
DOI PMID |
[59] |
A. du Plessis, I. Yadroitsava, I. Yadroitsev, Mater. Des. 187 (2020) 108385.
DOI URL |
[60] |
H. Gong, K. Rafi, H. Gu, G.D. Janaki Ram, T. Starr, B. Stucker, Mater. Des. 86 (2015) 545-554.
DOI URL |
[61] |
L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J. Li, Z. Zhang, Q. Yu, Z. Shen, Mater. Today 21 (2018) 354-361.
DOI URL |
[62] |
H. Chen, Z. Chen, G. Ji, S. Zhong, H. Wang, A. Borbély, Y. Ke, Y. Bréchet, Int. J. Plasticity 139 (2021) 102971.
DOI URL |
[63] |
D.D. Ben, Mater. Sci. Eng. A 798 (2020) 140109.
DOI URL |
[64] |
H. Wu, G. Fan, Prog. Mater. Sci. 113 (2020) 100675.
DOI URL |
[1] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[2] | Chong Yang, Pengming Cheng, Baoan Chen, Jinyu Zhang, Gang Liu, Jun Sun. Solute clusters-promoted strength-ductility synergy in Al-Sc alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 325-331. |
[3] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
[4] | Young-Kyun Kim, Kee-Ahn Lee. Stabilized sub-grain and nano carbides-driven 1.2 GPa grade ultra-strong CrMnFeCoNi high-entropy alloy additively manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 117(0): 8-22. |
[5] | Wanjun He, Qunfeng Zeng, Chao Yan, Jianing Zhu, Danli Zhang, Jiangnan Cao. Loading rate and holding load dependent room temperature nanoindentation creep behavior of 60NiTi alloy: Individual and coupling effects [J]. J. Mater. Sci. Technol., 2022, 101(0): 173-186. |
[6] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[7] | H.Y. Song, M.C. Lam, Y. Chen, S. Wu, P.D. Hodgson, X.H. Wu, Y.M. Zhu, A.J. Huang. Towards creep property improvement of selective laser melted Ni-based superalloy IN738LC [J]. J. Mater. Sci. Technol., 2022, 112(0): 301-314. |
[8] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
[9] | H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 226-235. |
[10] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
[11] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[12] | Hui Shen, Qingquan Zhang, Ying Yang, Yang Ren, Yanbao Guo, Yafeng Yang, Zhonghan Li, Zhiwei Xiong, Xiangguang Kong, Zhihui Zhang, Fangmin Guo, Lishan Cui, Shijie Hao. Selective laser melted high Ni content TiNi alloy with superior superelasticity and hardwearing [J]. J. Mater. Sci. Technol., 2022, 116(0): 246-257. |
[13] | Shuang Jiang, Lin Peng Ru, Kristián Máthis, Hai-Le Yan, Gergely Farkas, Zoltán Hegedues, Ulrich Lienert, Johan Moverare, Xiang Zhao, Liang Zuo, Nan Jia, Yan-Dong Wang. Shear banding-induced 〈c+a〉 slip enables unprecedented strength-ductility combination of laminated metallic composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 260-268. |
[14] | Yafeng Yang, Kang Geng, Shaofu Li, Michael Bermingham, R.D.K. Misra. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 110(0): 84-95. |
[15] | Yinuo Guo, Haijun Su, Haotian Zhou, Zhonglin Shen, Yuan Liu, Jun Zhang, Lin Liu, Hengzhi Fu. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 298-306. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||