J. Mater. Sci. Technol. ›› 2022, Vol. 109: 197-208.DOI: 10.1016/j.jmst.2021.08.069
• Research Article • Previous Articles Next Articles
S. Shuanga, Q. Yua, X. Gaoa, Q.F. Hea, J.Y. Zhanga, S.Q. Shib, Y. Yanga,c,*()
Received:
2021-06-21
Revised:
2021-08-26
Accepted:
2021-08-26
Published:
2022-05-20
Online:
2021-11-07
Contact:
Y. Yang
About author:
* Department of Mechanical Engineering, City Univer-sity of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China. E-mail address: yonyang@cityu.edu.hk (Y. Yang).S. Shuang, Q. Yu, X. Gao, Q.F. He, J.Y. Zhang, S.Q. Shi, Y. Yang. Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy[J]. J. Mater. Sci. Technol., 2022, 109: 197-208.
Fig. 1 (a)-(e) X-ray diffraction (XRD) results and (f)-(j) the typical SEM pictures of the chemically etched lamellar structure obtained from the as-cast wedge sample and plate samples subjected to various level of thermal annealing. (Note that scale bars are equal to 2 μm in (f)-(j)) (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 2. (a) HRTEM image of the FCC-Laves interface. The FFT image of the selected local areas in the FCC phase which corresponds to the position of (b) point 1, (c) point 2 and (d) point c in (a). (e) Averaged local lattice constant in the FCC phase along the yellow arrow in (a). (f) STEM image of the FCC and Laves phase with the elemental profiles across several interfaces. (Note that scale bars are equal to 10 1 /nm in (b)-(d)) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
Fig. 3. (a)-(e) Potentiodynamic polarisation curves of our EHEA samples with different thermal history. (f) A comparison of the corrosion current density (Icorr) and transpassivation potential (ET) between EHEAs and other materials in 1 M NaCl solution at room temperature. The corrosion morphologies of (g) the L140 and (h) L1500 sample after polarisation. (Note that scale bars equal 10 μm in (g) and (h)).
Samples | Ecorr (mVSCE) | Icorr (A · cm-2) | ET (mVSCE) |
---|---|---|---|
L80 | -173 ± 75 | (2.29 ± 0.12) × 10-8 | 993 ± 11 |
L140 | -283 ± 41 | (6.96 ± 0.80) × 10-8 | 974 ± 15 |
L250 | -299 ± 26 | (1.46 ± 0.10) × 10-7 | 958 ± 8 |
L700 | -301 ± 29 | (1.93 ± 0.39) × 10-7 | 631 ± 75 |
L1500 | -310 ± 11 | (2.17 ± 0.07) × 10-7 | 411 ± 62 |
Table 1. Corrosion properties of our EHEA samples obtained at room temperature in 1 M NaCl solution.
Samples | Ecorr (mVSCE) | Icorr (A · cm-2) | ET (mVSCE) |
---|---|---|---|
L80 | -173 ± 75 | (2.29 ± 0.12) × 10-8 | 993 ± 11 |
L140 | -283 ± 41 | (6.96 ± 0.80) × 10-8 | 974 ± 15 |
L250 | -299 ± 26 | (1.46 ± 0.10) × 10-7 | 958 ± 8 |
L700 | -301 ± 29 | (1.93 ± 0.39) × 10-7 | 631 ± 75 |
L1500 | -310 ± 11 | (2.17 ± 0.07) × 10-7 | 411 ± 62 |
Metals and alloys | Icorr (nA · cm-2) | Ecorr (mVSCE) | ET (mVSCE) | Refs. |
---|---|---|---|---|
FeCrNiCoNb0.5-L80 | 23 | -173 | 993 | This study |
FeCrNiCoNb0.5-L140 | 70 | -283 | 974 | |
FeCrNiCoNb0.5-L250 | 146 | -299 | 958 | |
FeCrNiCoNb0.5-L700 | 193 | -301 | 631 | |
FeCrNiCoNb0.5-L1500 | 217 | -310 | 411 | |
FeCoNi | 400 | -493 | -32 | [ |
FeCoNiCr | 280 | -328 | -34 | [ |
FeCoNiNb | 43,000 | -494 | -235 | [ |
CrFeMn0.5Ni0.5 | 450 | -631 | -222 | [ |
FeCoNiNb0.5Mo0.5 | 33,000 | -455 | 295 | [ |
Co1.5CrFeNi1.5TiMo0.1 | 130 | -622 | 973 | [ |
Co1.5CrFeNi1.5TiMo0.5 | 200 | -734 | 923 | [ |
Co1.5CrFeNi1.5TiMo0.8 | 410 | -792 | 941 | [ |
Co1.5CrFeNi1.5TiMo0 | 570 | -684 | 97 | [ |
Al0.3CrFeMn0.5Ni0.5 | 690 | -641 | -391 | [ |
Al0.5CrFeMn0.5Ni0.5 | 1020 | -741 | -361 | [ |
Cu0.5NiAlCoCrFeSi | 3160 | -770 | -490 | [ |
304 SSa | 30 | -196 | 346 | [ |
202 SSa | 24 | -110 | 439 | [ |
316 L SSa | 29 | -90 | 606 | [ |
Ion Nitriding 316 L SSa | 232 | -654 | -6 | [ |
E309 DSSb | 279 | -243 | 431 | [ |
E2209 DSSb | 918 | -266 | 492 | [ |
Carbon steel | 4L1500 | -651 | -c | [ |
AA2024-T3d | 86 | -917 | -704 | [ |
AA2024-T3d with LBPe | 38 | -907 | -676 | [ |
AA7075d | 1188 | -896 | -813 | [ |
T240d | 70,000 | -712 | -618 | [ |
Ni-based alloy 22 | 40 | -339 | 597 | [ |
Ni50.8Ti49.2 | 2000 | -380 | 358 | [ |
Ti60Cu14Ni12Sn4Nb10 | 9500 | -409 | -182 | [ |
Copperf | 18,100 | -540 | -188 | [ |
Nickelf | 71,600 | -477 | 174 | [ |
Table 2. Summary of the corrosion properties (derived from potentiodynamic polarisation curves) of metals and alloys at room temperature in 1 M NaCl solution.
Metals and alloys | Icorr (nA · cm-2) | Ecorr (mVSCE) | ET (mVSCE) | Refs. |
---|---|---|---|---|
FeCrNiCoNb0.5-L80 | 23 | -173 | 993 | This study |
FeCrNiCoNb0.5-L140 | 70 | -283 | 974 | |
FeCrNiCoNb0.5-L250 | 146 | -299 | 958 | |
FeCrNiCoNb0.5-L700 | 193 | -301 | 631 | |
FeCrNiCoNb0.5-L1500 | 217 | -310 | 411 | |
FeCoNi | 400 | -493 | -32 | [ |
FeCoNiCr | 280 | -328 | -34 | [ |
FeCoNiNb | 43,000 | -494 | -235 | [ |
CrFeMn0.5Ni0.5 | 450 | -631 | -222 | [ |
FeCoNiNb0.5Mo0.5 | 33,000 | -455 | 295 | [ |
Co1.5CrFeNi1.5TiMo0.1 | 130 | -622 | 973 | [ |
Co1.5CrFeNi1.5TiMo0.5 | 200 | -734 | 923 | [ |
Co1.5CrFeNi1.5TiMo0.8 | 410 | -792 | 941 | [ |
Co1.5CrFeNi1.5TiMo0 | 570 | -684 | 97 | [ |
Al0.3CrFeMn0.5Ni0.5 | 690 | -641 | -391 | [ |
Al0.5CrFeMn0.5Ni0.5 | 1020 | -741 | -361 | [ |
Cu0.5NiAlCoCrFeSi | 3160 | -770 | -490 | [ |
304 SSa | 30 | -196 | 346 | [ |
202 SSa | 24 | -110 | 439 | [ |
316 L SSa | 29 | -90 | 606 | [ |
Ion Nitriding 316 L SSa | 232 | -654 | -6 | [ |
E309 DSSb | 279 | -243 | 431 | [ |
E2209 DSSb | 918 | -266 | 492 | [ |
Carbon steel | 4L1500 | -651 | -c | [ |
AA2024-T3d | 86 | -917 | -704 | [ |
AA2024-T3d with LBPe | 38 | -907 | -676 | [ |
AA7075d | 1188 | -896 | -813 | [ |
T240d | 70,000 | -712 | -618 | [ |
Ni-based alloy 22 | 40 | -339 | 597 | [ |
Ni50.8Ti49.2 | 2000 | -380 | 358 | [ |
Ti60Cu14Ni12Sn4Nb10 | 9500 | -409 | -182 | [ |
Copperf | 18,100 | -540 | -188 | [ |
Nickelf | 71,600 | -477 | 174 | [ |
Fig. 4. (a) Nyquist and (b) Bode plots of L140 and L1500 samples exposed to 1 M NaCl solution in the single-cylinder corrosion cell under open circuit potential condition. The inset of (a) shows the equivalent circuit. (c) Resistance and passive film thickness obtained from EIS plots. (d) Calculated thickness of the passive film during the potentiostatic oxide growth for L140 and L1500 samples in 1 M NaCl solution.
Material | Rs (Ω cm2) | Q1 10-6 (Ω-1 cm-2 s-n) | n1 | R1 (Ω cm2) | Q2 10-6 (Ω-1 cm-2 s-n) | n2 | R2 106 (Ω cm2) | χ2 × 10-3 |
---|---|---|---|---|---|---|---|---|
L140 | 3.65 (0.8) | 7.34 (9.8) | 0.99 (0.91) | 50.65 (14.4) | 9.79 (12.4) | 0.82 (0.67) | 5.75 (10.4) | 1.88 |
L1500 | 3.68 (1.1) | 16.22 (11.0) | 0.98 (2.0) | 20.81 (19.0) | 19.37 (18.2) | 0.84 (1.26) | 0.90 (7.07) | 1.86 |
Table 3. Equivalent circuit elements values for EIS data corresponding to L140 and L1500 samples in 1 M NaCl solution.
Material | Rs (Ω cm2) | Q1 10-6 (Ω-1 cm-2 s-n) | n1 | R1 (Ω cm2) | Q2 10-6 (Ω-1 cm-2 s-n) | n2 | R2 106 (Ω cm2) | χ2 × 10-3 |
---|---|---|---|---|---|---|---|---|
L140 | 3.65 (0.8) | 7.34 (9.8) | 0.99 (0.91) | 50.65 (14.4) | 9.79 (12.4) | 0.82 (0.67) | 5.75 (10.4) | 1.88 |
L1500 | 3.68 (1.1) | 16.22 (11.0) | 0.98 (2.0) | 20.81 (19.0) | 19.37 (18.2) | 0.84 (1.26) | 0.90 (7.07) | 1.86 |
Fig. 5. Topography profiles of (a) L1500 sample and (b) L140 sample. The mapping of electronic work function on the surface of (c) L1500 sample and (d) L140 sample. (e, f) The profile of electronic work function along the dash line in (c, d). (Note that scale bars are equal to 2 μm in (a)-(d)) (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 6. High resolution XPS spectra of the passive films formed on the L140 and L1500 sample after passivation for 3 h at + 250 mVSCE in 1 M NaCl solution at room temperature. (a) Cr 2p; (b) Nb 3d; (c) Fe 2p; (d) Ni 2p; (e) Co 2p; (f) O 1s. (g) The calculated cationic fractions of the metallic elements in the passive film of the L140 and L1500 sample.
Fig. 7. (a) Mott-Schottky plots for the passive film formed on L140 and L1500 samples in 1 M NaCl solution at OCP for 3 h. (b) Flat band potential and donor densities of the passive films formed on L140 and L1500 sample.
Fig. 8. (a) Double-layer capacitance as a function of electrode potential for the passive films formed for 3 h at OCP on HEAs with various grain sizes. (b) The measured difference between Ecorr and PZFC for the L140 and L1500 sample (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 9. (a) The calculated critical potential difference ∆ET a function of surface tension of the metal-electrolyte interface for different passive film thickness. (b) Schematics of the microstructural size effect on the passivation on our EHEA in 1 M NaCl solution at room temperature (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
[1] |
J. Soltis, Corros. Sci. 90 (2015) 5-22.
DOI URL |
[2] |
H.H. Strehblow, Electrochim. Acta 212 (2016) 630-648.
DOI URL |
[3] |
Y. Dou, S. Han, L. Wang, X. Wang, Z. Cui, Corros. Sci. 165 (2020) 108405.
DOI URL |
[4] |
Z. Cui, S. Chen, Y. Dou, S. Han, L. Wang, C. Man, X. Wang, S. Chen, Y.F. Cheng, X. Li, Corros. Sci. 150 (2019) 218-234.
DOI URL |
[5] | P.F. Ji, B. Li, B.H. Chen, F. Wang, W. Ma, X.Y. Zhang, M.Z. Ma, R.P. Liu, Corros. Sci. 170 (2020). |
[6] | Y. Zhang, M. Urquidi-MacDonald, G.R. Engelhardt, D.D. MacDonald, Elec-trochim. Acta 69 (2012) 12-18. |
[7] |
B. Sefer, S. Virtanen, Corros. Sci. 150 (2019) 127-135.
DOI URL |
[8] |
F.F. Han, M. Liu, Y.Y. Jia, C.Y. Wang, X.L. Li, L. Bin, R.D. Liu, X.T. Zhou, Corros. Sci. 177 (2020) 109013.
DOI URL |
[9] |
M. Långberg, F. Zhang, E. Grånäs, C. Örnek, J. Cheng, M. Liu, C. Wiemann, A. Gloskovskii, T.F. Keller, C. Schlueter, S. Kulkarni, H. Noei, D. Lindell, U. Kivisäkk, E. Lundgren, A. Stierle, J. Pan, Corros. Sci. 174 (2020) 108841.
DOI URL |
[10] |
L.M. Zhang, S.D. Zhang, A.L. Ma, H.X. Hu, Y.G. Zheng, B.J. Yang, J.Q. Wang, Corros. Sci. 144 (2018) 172-183.
DOI URL |
[11] |
F. Yang, H. Kang, E. Guo, R. Li, Z. Chen, Y. Zeng, T. Wang, Corros. Sci. 139 (2018) 333-345.
DOI URL |
[12] |
Z.C. Cordero, B.E. Knight, C.A. Schuh, Int. Mater. Rev. 61 (2016) 495-512.
DOI URL |
[13] | Y. Li, A.J. Bushby, D.J. Dunstan, Proc. R. Soc. A Math. Phys. Eng. Sci. 472 (2016) 20150890. |
[14] | Q. Wang, Y.J. Song, MRS Proc. 362 (2011) 1-13. |
[15] | L. Liu, Y. Li, F. Wang, J. Mater. Sci. Technol. 26 (2010) 1-14. |
[16] |
Y. Li, F. Wang, G. Liu, Corrosion 60 (2004) 891-896.
DOI URL |
[17] |
C. Pan, L. Liu, Y. Li, F. Wang, Corros. Sci. 73 (2013) 32-43.
DOI URL |
[18] | H. Zhang, P. Xue, L.H. Wu, Q.N. Song, D. Wang, B.L. Xiao, Z.Y. Ma, Corros. Sci. 174 (2020) 1-10. |
[19] |
Z.J. Zheng, Y. Gao, Y. Gui, M. Zhu, Corros. Sci. 54 (2012) 60-67.
DOI URL |
[20] |
A. Abbasi Aghuy, M. Zakeri, M.H. Moayed, M. Mazinani, Corros. Sci. 94 (2015) 368-376.
DOI URL |
[21] |
M. Pisarek, P. Kędzierzawski, M. Janik-Czachor, K.J. Kurzydłowski, J. Solid State Electrochem. 13 (2009) 283-291.
DOI URL |
[22] |
Y. Lu, A.R. Bradshaw, Y.L. Chiu, I.P. Jones, Mater. Sci. Eng C 48 (2015) 480-486.
DOI URL |
[23] | J. Lu, P. Ge, Q. Li, W. Zhang, W. Huo, J. Hu, Y. Zhang, Y. Zhao, J. Alloy.Compd. 727 (2017) 1126-1135. |
[24] |
R.K. Gupta, N. Birbilis, Corros. Sci. 92 (2015) 1-15.
DOI URL |
[25] | P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, J. Dolinšek, Phys. Rev. Lett. 113 (2014) 1-5. |
[26] | Y. Zhang, M. Urquidi-MacDonald, G.R. Engelhardt, D.D. MacDonald, Elec-trochim. Acta 69 (2012) 12-18. |
[27] |
S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, L. Vitos, Scr. Mater. 108 (2015) 44-47.
DOI URL |
[28] |
N. Ishizu, J. Kitagawa, Results Phys. 13 (2019) 102275.
DOI URL |
[29] |
E.J. Pickering, N.G. Jones, Int. Mater. Rev. 61 (2016) 183-202.
DOI URL |
[30] |
H. Luo, Z. Li, W. Lu, D. Ponge, D. Raabe, Corros. Sci. 136 (2018) 403-408.
DOI URL |
[31] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[32] |
D. Bridges, S. Zhang, S. Lang, M. Gao, Z. Yu, Z. Feng, A. Hu, Mater. Lett. 215 (2018) 11-14.
DOI URL |
[33] | Z. Lei, Y. Wu, J. He, X. Liu, H. Wang, S. Jiang, L. Gu, Q. Zhang, B. Gault, D. Raabe, Z. Lu, Sci. Adv. 6 (2020) 1-9. |
[34] | Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Inter-metallics 84 (2017) 153-157. |
[35] |
M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Acta Mater. 59 (2011) 6308-6317.
DOI URL |
[36] |
Z.S. Nong, Y.N. Lei, J.C. Zhu, Intermetallics 101 (2018) 144-151.
DOI URL |
[37] |
S. Shuang, Z.Y. Ding, D. Chung, S.Q. Shi, Y. Yang, Corros. Sci. 164 (2020) 108315.
DOI URL |
[38] |
Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw, B. Yang, Corros. Sci. 133 (2018) 120-131.
DOI URL |
[39] |
Y. Qiu, M.A. Gibson, H.L. Fraser, N. Birbilis, Mater. Sci. Technol. 31 (2015) 1235-1243.
DOI URL |
[40] |
L. Wei, Y. Liu, Q. Li, Y.F. Cheng, Corros. Sci. 146 (2019) 44-57.
DOI URL |
[41] | Y. Lou, C. Dai, W. Chang, H. Qian, L. Huang, C. Du, D. Zhang, Corros. Sci. 165 (2020). |
[42] |
H. Luo, S.S. Sohn, W. Lu, L. Li, X. Li, C.K. Soundararajan, W. Krieger, Z. Li, D. Raabe, Nat. Commun. 11 (2020) 1-8.
DOI URL |
[43] |
Q.T. Song, J. Xu, Corros. Sci. 167 (2020) 108513.
DOI URL |
[44] |
A.Y. Gerard, J. Han, S.J. McDonnell, K. Ogle, E.J. Kautz, D.K. Schreiber, P. Lu, J.E. Saal, G.S. Frankel, J.R. Scully, Acta Mater. 198 (2020) 121-133.
DOI URL |
[45] |
P. Lu, J.E. Saal, G.B. Olson, T. Li, O.J. Swanson, G.S. Frankel, A.Y. Gerard, K.F. Quiambao, J.R. Scully, Scr. Mater. 153 (2018) 19-22.
DOI URL |
[46] |
K.F. Quiambao, S.J. McDonnell, D.K. Schreiber, A.Y. Gerard, K.M. Freedy, P. Lu, J.E. Saal, G.S. Frankel, J.R. Scully, Acta Mater. 164 (2019) 362-376.
DOI URL |
[47] |
H. Luo, Z. Li, A.M. Mingers, D. Raabe, Corros. Sci. 134 (2018) 131-139.
DOI URL |
[48] |
Y. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, P.K. Liaw, Corros. Sci. 119 (2017) 33-45.
DOI URL |
[49] |
C. Dai, H. Luo, J. Li, C. Du, Z. Liu, J. Yao, Appl. Surf. Sci. 499 (2020) 143903.
DOI URL |
[50] | T. Li, O.J. Swanson, G.S. Frankel, A.Y. Gerard, P. Lu, J.E. Saal, J.R. Scully, Elec-trochim. Acta 306 (2019) 71-84. |
[51] |
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19 (2016) 349-362.
DOI URL |
[52] |
Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, Acta Mater. 131 (2017) 323-335.
DOI URL |
[53] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[54] |
J. Li, W. Jia, J. Wang, H. Kou, D. Zhang, E. Beaugnon, Mater. Des. 95 (2016) 183-187.
DOI URL |
[55] |
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
[56] |
Y. Wang, J. Jin, M. Zhang, X. Wang, P. Gong, J. Zhang, J. Liu, J. Alloy. Compd. 858 (2021) 157712.
DOI URL |
[57] |
R. Wang, K. Zhang, C. Davies, X. Wu, J. Alloy. Compd. 694 (2017) 971-981.
DOI URL |
[58] |
Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang, Y. Wu, Appl. Surf. Sci. 396 (2017) 1420-1426.
DOI URL |
[59] |
Z.G. Zhu, K.H. Ma, Q. Wang, C.H. Shek, Intermetallics 79 (2016) 1-11.
DOI URL |
[60] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[61] |
Y.J. Hsu, W.C. Chiang, J.K. Wu, Mater. Chem. Phys. 92 (2005) 112-117.
DOI URL |
[62] |
Y. Cai, Y. Chen, S.M. Manladan, Z. Luo, F. Gao, L. Li, Mater. Des. 142 (2018) 124-137.
DOI URL |
[63] |
Y.L. Chou, J.W. Yeh, H.C. Shih, Corros. Sci. 52 (2010) 2571-2581.
DOI URL |
[64] |
Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, Corros. Sci. 47 (2005) 2257-2279.
DOI URL |
[65] |
Y. Qiu, M.A. Gibson, H.L. Fraser, N. Birbilis, Mater. Sci. Technol. 31 (2015) 1235-1243.
DOI URL |
[66] |
D.H. Xiao, P.F. Zhou, W.Q. Wu, H.Y. Diao, M.C. Gao, M. Song, P.K. Liaw, Mater. Des. 116 (2017) 438-447.
DOI URL |
[67] |
C.L. Wu, S. Zhang, C.H. Zhang, H. Zhang, S.Y. Dong, J. Alloy. Compd. 698 (2017) 761-770.
DOI URL |
[68] |
G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, J. Alloy. Compd. 591 (2014) 11-21.
DOI URL |
[69] |
Y. Zhou, X. Jin, X.Y. Du, L. Zhang, B.S. Li, Mater. Sci. Technol. 34 (2018) 988-991 (United Kingdom).
DOI URL |
[70] | Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Appl. Phys. Lett. 90 (2007). |
[71] |
C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36 (2005) 1263-1271.
DOI URL |
[72] |
R.B. Nair, H.S. Arora, S. Mukherjee, S. Singh, H. Singh, H.S. Grewal, Ultrason. Sonochem. 41 (2018) 252-260.
DOI PMID |
[73] |
H. Zhang, Y. Pan, Y.Z. He, Mater. Des. 32 (2011) 1910-1915.
DOI URL |
[74] |
T.T. Shun, L.Y. Chang, M.H. Shiu, Mater. Sci. Eng. A 556 (2012) 170-174.
DOI URL |
[75] |
H. Luo, W. Lu, X. Fang, D. Ponge, Z. Li, D. Raabe, Mater. Today 21 (2018) 1003-1009.
DOI URL |
[76] | P. Muangtong, A. Rodchanarowan, D. Chaysuwan, N. Chanlek, R. Goodall, Cor-ros. Sci. 172 (2020) 108740. |
[77] | D. Chung, Z. Ding, Y. Yang, Adv. Eng. Mater. 21 (2019) 1-11. |
[78] |
Z.Y. Ding, Q.F. He, D. Chung, Y. Yang, Scr. Mater. 187 (2020) 280-284.
DOI URL |
[79] |
K. Lutton, K. Gusieva, N. Ott, N. Birbilis, J.R. Scully, Electrochem. Commun. 80 (2017) 44-47.
DOI URL |
[80] |
G. Meng, Y. Li, Y. Shao, T. Zhang, Y. Wang, F. Wang, X. Cheng, C. Dong, X. Li, J. Mater. Sci. Technol. 31 (2015) 1186-1192.
DOI URL |
[81] |
L. Liu, Y. Li, F. Wang, Electrochim. Acta 52 (2007) 2392-2400.
DOI URL |
[82] |
A.M. El-Aziz, R. Hoyer, L.A. Kibler, D.M. Kolb, Electrochim. Acta 51 (2006) 2518-2522.
DOI URL |
[83] |
S. Qu, X. Pang, Y. Wang, K. Gao, Corros. Sci. 75 (2013) 67-77.
DOI URL |
[84] |
R.A. Perren, T.A. Suter, P.J. Uggowitzer, L. Weber, R. Magdowski, H. Böhni, M.O. Speidel, Corros. Sci.. 43 (2001) 707-726.
DOI URL |
[85] |
M. Orłowska, E. Ura-Bińczyk, L. Olejnik, M. Lewandowska, Corros. Sci. 148 (2019) 57-70.
DOI URL |
[86] |
P.Y. Jouan, A. Tricoteaux, N. Horny, Rev. Esc. Minas 59 (2006) 225-232.
DOI URL |
[87] |
I.G. Ringdalen, I.J.T. Jensen, C.D. Marioara, J. Friis, Metals 11 (6) (2021) 894 (Basel).
DOI URL |
[88] | N. Sato, J. Electrochem. Soc. 47 (1998) 78-85. |
[89] |
A.A. Dastgerdi, A. Brenna, M. Ormellese, M.P. Pedeferri, F. Bolzoni, Corros. Sci. 159 (2019) 108160.
DOI URL |
[90] |
Y. Qiu, M.A. Gibson, H.L. Fraser, N. Birbilis, Mater. Sci. Technol. 31 (2015) 1235-1243 (United Kingdom).
DOI URL |
[91] |
C.H. Tsau, W.L. Wang, Materials 11 (2018) 1-12 (Basel).
DOI URL |
[92] |
C.H. Tsau, S.X. Lin, C.H. Fang, Mater. Chem. Phys. 186 (2017) 534-540.
DOI URL |
[93] |
C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh, H.C. Shih, Corros. Sci. 50 (2008) 2053-2060.
DOI URL |
[94] |
F. Borgioli, E. Galvanetto, T. Bacci, Corros. Sci. 136 (2018) 352-365.
DOI URL |
[95] |
L. Nosei, S. Farina, M. Ávalos, L. Náchez, B.J. Gómez, J. Feugeas, Thin Solid Films 516 (2008) 1044-1050.
DOI URL |
[96] |
P.B. Srinivasan, V. Muthupandi, W. Dietzel, V. Sivan, Mater. Des. 27 (2006) 182-191.
DOI URL |
[97] |
F. Zhang, J. Pan, P.M. Claesson, Electrochim. Acta 56 (2011) 1636-1645.
DOI URL |
[98] |
W. Zhang, G.S. Frankel, Electrochim. Acta 48 (2003) 1193-1210.
DOI URL |
[99] |
X. Liu, G.S. Frankel, Corros. Sci. 48 (2006) 3309-3329.
DOI URL |
[100] |
K.H. Na, S. Il Pyun, Corros. Sci. 50 (2008) 248-258.
DOI URL |
[101] | G. Georges, Corros. Sci. (1913) 310-327. |
[102] |
S.D. Day, M.T. Whalen, K.J. King, G.A. Hust, L.L. Wong, J.C. Estill, R.B. Rebak, Corrosion 60 (2004) 804-814.
DOI URL |
[103] |
R.E. McMahon, J. Ma, S.V. Verkhoturov, D. Munoz-Pinto, I. Karaman, F. Ru-bitschek, H.J. Maier, M.S. Hahn, Acta Biomater. 8 (2012) 2863-2870.
DOI URL |
[104] |
S. Mato, G. Alcalá, T.G. Woodcock, A. Gebert, J. Eckert, L. Schultz, Electrochim. Acta 50 (2005) 2461-2467.
DOI URL |
[105] |
M. Scendo, Corros. Sci. 49 (2007) 373-390.
DOI URL |
[106] |
X. Wang, B. Wang, L. Zhang, C. Yang, Y. Yang, Metals 7 (2017) 1-12 (Basel).
DOI URL |
[107] |
Y. Qiu, S. Thomas, M.A. Gibson, H.L. Fraser, K. Pohl, N. Birbilis, Corros. Sci. 133 (2018) 386-396.
DOI URL |
[108] |
K. Yamanaka, H. Shiratori, M. Mori, K. Omura, T. Fujieda, K. Kuwabara, A. Chiba, Npj Mater. Degrad. 4 (2020) 1-12.
DOI URL |
[109] |
S.L. De Assis, S. Wolynec, I. Costa, Electrochim. Acta 51 (2006) 1815-1819.
DOI URL |
[110] |
A. Kocijan, D.K. Merl, M. Jenko, Corros. Sci. 53 (2011) 776-783.
DOI URL |
[111] |
C. Boissy, C. Alemany-Dumont, B. Normand, Electrochem. Commun. 26 (2013) 10-12.
DOI URL |
[112] |
D. Wallinder, J. Pan, C. Leygraf, A. Delblanc-Bauer, Corros. Sci. 41 (1998) 275-289.
DOI URL |
[113] |
D. Kong, C. Dong, M. Zhao, X. Ni, C. Man, X. Li, Corros. Eng. Sci Technol. 53 (2018) 122-130.
DOI URL |
[114] |
L. Wang, Y. Lin, Z. Zeng, W. Liu, Q. Xue, L. Hu, J. Zhang, Electrochim. Acta 52 (2007) 4342-4350.
DOI URL |
[115] |
W. Li, D.Y. Li, Acta Mater. 54 (2006) 445-452.
DOI URL |
[116] |
S. Tao, D.Y. Li, Nanotechnology 17 (2006) 65-78.
DOI URL |
[117] |
J. Lv, W. Guo, T. Liang, J. Alloy. Compd. 686 (2016) 176-183.
DOI URL |
[118] |
J. Lv, H. Luo, J. Nucl. Mater. 452 (2014) 469-473.
DOI URL |
[119] |
G. Palumbo, S.J. Thorpe, K.T. Aust, Scr. Metall. Mater. 24 (1990) 1347-1350.
DOI URL |
[120] | D.Y. Li, Mater. Res. Soc. Symp. Proc. 887 (2006) 227-235. |
[121] |
S.G. Wang, M. Sun, K. Long, Steel Res. Int. 83 (2012) 800-807.
DOI URL |
[122] |
A. Nazarov, V. Vivier, F. Vucko, D. Thierry, J. Electrochem. Soc. 166 (2019) C3207-C3219.
DOI |
[123] |
NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 20899, 2000, doi: 10.18434/T4T88K.
DOI |
[124] |
A.R. Brooks, C.R. Clayton, K. Doss, Y.C. Lu, J. Electrochem. Soc. 133 (1986) 2459-2464.
DOI URL |
[125] |
Z.B. Wang, H.X. Hu, Y.G. Zheng, Corros. Sci. 130 (2018) 203-217.
DOI URL |
[126] |
M. Filella, P.M. May, Appl. Geochem. 122 (2020) 104729.
DOI URL |
[127] |
A. Foelske, H.H. Strehblow, Surf. Interface Anal. 29 (20 0 0) 548-555.
DOI URL |
[128] |
T. Nishimura, H. Katayama, K. Noda, T. Kodama, Corros. Sci. 42 (2000) 1611-1621.
DOI URL |
[129] |
H. Luo, S. Zou, Y.H. Chen, Z. Li, C. Du, X. Li, Corros. Sci. 163 (2020) 108287.
DOI URL |
[130] |
Z. Xu, H. Zhang, X. Du, Y. He, H. Luo, G. Song, L. Mao, T. Zhou, L. Wang, Corros. Sci. 177 (2020) 108954.
DOI URL |
[131] |
G.A. Zhang, Y.F. Cheng, Electrochim. Acta 55 (2009) 316-324.
DOI URL |
[132] |
R.M. Fernández-Domene, E. Blasco-Tamarit, D.M. García-García, J. García-An-tón, Electrochim. Acta 95 (2013) 1-11.
DOI URL |
[133] |
A. Fattah-alhosseini, F. Soltani, F. Shirsalimi, B. Ezadi, N. Attarzadeh, Corros. Sci. 53 (2011) 3186-3192.
DOI URL |
[134] |
Y.F. Cheng, J.L. Luo, Appl. Surf. Sci. 167 (20 0 0) 113-121.
DOI URL |
[135] |
L. Hamadou, A. Kadri, N. Benbrahim, Appl. Surf. Sci. 252 (2005) 1510-1519.
DOI URL |
[136] |
E.M.A. Martini, I.L. Muller, Corros. Sci. 42 (20 0 0) 443-454.
DOI URL |
[137] | C.A. Della Rovere, J.H. Alano, R. Silva, P.A.P. Nascente, J. Otubo, S.E. Kuri, Cor-ros. Sci. 57 (2012) 154-161. |
[138] |
S. Al Saadi, Y. Yi, P. Cho, C. Jang, P. Beeley, Corros. Sci. 111 (2016) 720-727.
DOI URL |
[139] |
J.E. Qu, X. Guo, Z. Chen, Mater. Chem. Phys. 93 (2005) 388-394.
DOI URL |
[140] |
G. Meng, F. Sun, Y. Shao, T. Zhang, F. Wang, C. Dong, X. Li, Electrochim. Acta 55 (2010) 2575-2581.
DOI URL |
[141] |
L.F. Lin, C.Y. Chao, D.D. Macdonald, J. Electrochem. Soc. 128 (1981) 1194-1198.
DOI URL |
[142] |
L.F. Lin, J. Electrochem. Soc. 128 (1981) 1194.
DOI URL |
[143] |
T.P. Hoar, Corros. Sci. 7 (1967) 341-355.
DOI URL |
[144] |
A. Seyeux, V. Maurice, L.H. Klein, P. Marcus, Electrochim. Acta 54 (2008) 540-544.
DOI URL |
[145] |
P. Marcus, V. Maurice, H.H. Strehblow, Corros. Sci. 50 (2008) 2698-2704.
DOI URL |
[146] |
V. Maurice, P. Marcus, Electrochim. Acta 84 (2012) 129-138.
DOI URL |
[1] | Fan Yang, Lilin Wang, Zhijun Wang, Qingfeng Wu, Kexuan Zhou, Xin Lin, Weidong Huang. Ultra strong and ductile eutectic high entropy alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 106(0): 128-132. |
[2] | Huimin Xiang, Pengyun Liu, Wei Wang, Ran Ran, Wei Zhou, Zongping Shao. Sodium fluoride sacrificing layer concept enables high-efficiency and stable methylammonium lead iodide perovskite solar cells [J]. J. Mater. Sci. Technol., 2022, 113(0): 138-146. |
[3] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[4] | Hongtao Zeng, Yong Yang, Minhang Zeng, Moucheng Li. Effect of dissolved oxygen on electrochemical corrosion behavior of 2205 duplex stainless steel in hot concentrated seawater [J]. J. Mater. Sci. Technol., 2021, 66(0): 177-185. |
[5] | Hua Zhang, Jia Zhuang, Xingchong Liu, Zhu Ma, Heng Guo, Ronghong Zheng, Shuangshuang Zhao, Fu Zhang, Zheng Xiao, Hanyu Wang, Haimin Li. Defect passivation strategy for inorganic CsPbI2Br perovskite solar cell with a high-efficiency of 16.77% [J]. J. Mater. Sci. Technol., 2021, 82(0): 40-46. |
[6] | Zhen Li, Zhang-Zhi Shi, Hai-Jun Zhang, Hua-Fang Li, Yun Feng, Lu-Ning Wang. Hierarchical microstructure and two-stage corrosion behavior of a high-performance near-eutectic Zn-Li alloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 50-65. |
[7] | Xuan Wu, Yuanyuan Liu, Yangting Sun, Nianwei Dai, Jin Li, Yiming Jiang. A discussion on evaluation criteria for crevice corrosion of various stainless steels [J]. J. Mater. Sci. Technol., 2021, 64(0): 29-37. |
[8] | Ji Liu, Jianqiu Wang, Zhiming Zhang, Hui Zheng. Repassivation behavior of alloy 690TT in simulated primary water at different temperatures [J]. J. Mater. Sci. Technol., 2021, 68(0): 227-235. |
[9] | L.L. Li, Z.B. Wang, S.Y. He, Y.G. Zheng. Correlation between depassivation and repassivation processes determined by single particle impingement: Its crucial role in the phenomenon of critical flow velocity for erosion-corrosion [J]. J. Mater. Sci. Technol., 2021, 89(0): 158-166. |
[10] | Jian Han, Xingyu Pu, Hui Zhou, Qi Cao, Shuangjie Wang, Jiabao Yang, Junsong Zhao, Xuanhua Li. Multidentate anchoring through additive engineering for highly efficient Sb2S3 planar thin film solar cells [J]. J. Mater. Sci. Technol., 2021, 89(0): 36-44. |
[11] | Zhangweijia Qiu, Zhengkun Li, Huameng Fu, Hongwei Zhang, Zhengwang Zhu, Aimin Wang, Hong Li, Long Zhang, Haifeng Zhang. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46(0): 33-43. |
[12] | Shuang Liang, Gang He, Die Wang, Fen Qiao. Atomic-layer-deposited (ALD) Al2O3 passivation dependent interface chemistry, band alignment and electrical properties of HfYO/Si gate stacks [J]. J. Mater. Sci. Technol., 2019, 35(5): 769-776. |
[13] | Fang Xue, Xin Wei, Junhua Dong, Ini-Ibehe Nabuk Etim, Changgang Wang, Wei Ke. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34(8): 1349-1358. |
[14] | Xuequn Cheng, Yi Wang, Xiaogang Li, Chaofang Dong. Interaction between austein-ferrite phases on passive performance of 2205 duplex stainless steel [J]. J. Mater. Sci. Technol., 2018, 34(11): 2140-2148. |
[15] | Yanghui Liu, Liqiang Zhu, Liqiang Guo, Hongliang Zhang, Hui Xiao. Surface Passivation Performance of Atomic-Layer-Deposited Al2O3 on p-type Silicon Substrates [J]. J. Mater. Sci. Technol., 2014, 30(8): 835-838. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||