J. Mater. Sci. Technol. ›› 2022, Vol. 111: 49-56.DOI: 10.1016/j.jmst.2021.09.041
• Research Article • Previous Articles Next Articles
Guo-Xiang Zhoua,b,c, Zhe Zhaoa,b,c, Yan-zhao Zhanga,b,c, Wen-jin Liua,b, Zhi-Hua Yanga,b,c,*(), De-Chang Jiaa,b, Yu Zhoua,b
Received:
2021-07-06
Revised:
2021-09-07
Accepted:
2021-09-08
Published:
2021-11-27
Online:
2021-11-27
Contact:
Zhi-Hua Yang
About author:
* Harbin Institute of Technology, China E-mail address: zhyang@hit.edu.cn (Z.-H. Yang).Guo-Xiang Zhou, Zhe Zhao, Yan-zhao Zhang, Wen-jin Liu, Zhi-Hua Yang, De-Chang Jia, Yu Zhou. Printing and electromagnetic characteristics of 3D printing frequency selective surface using graphene[J]. J. Mater. Sci. Technol., 2022, 111: 49-56.
Fig. 2. (a) The relationship between viscosity and shear rate. (b) The relationship between shear stress and shear rate. (c) The calculated static viscosity η0 and the viscosity at shear rate of 500/s. (d) The viscosity of graphene modified ink under heating environment.
Fig. 4. Printing precision of the graphene modified silver ink during the printing process, the evacuation process, and the sintering process. Evolution of printing precision during the preparing process for the graphene modified silver ink (a), evolution of length (b) and width (c).
Fig. 5. Printed high precision conductivity silver pattern at micro-scale. (a) School badge of Harbin institute of technology, (b) SEM images of the printed high precision graphene modified silver lines, (c) 2D printing of the graphene modified silver on a shapely hook face, (d) SEM images of the space between the two graphene modified silver lines, (e, f) Optical photograph of the 3D printed graphene modified silver structure.
Fig. 7. (a) Designed FSS model, (b) electromagnetic performance of the silver-based FSS before modified and after modified, (c) printed graphene modified FSS, (d) simulated transmission coefficient of designed FSS and the printed FSS using graphene modified silver.
[1] | A .D. Valentine T.A. Busbee J.W. Boley J.R. Raney A. Chortos A. Kotikian J.D. Berrigan M.F. Durstock J.A. Lewis Adv. Mater. 29 (2017) 1703817. |
[2] | A. Chortos, E. Hajiesmaili, J. Morales, D.R. Clarke, J.A. Lewis, Adv.Funct. Mater. 30 (2020) 1907375. |
[3] | Y.Q. Jiang, Z. Xu, T.Q. Huang, Y.J. Liu, F. Guo, J.B. Xi, W.W. Gao, C. Gao, Adv.Funct. Mater. 28 (2018) 1707024. |
[4] | J.A. Lewis, Adv.Funct. Mater. 16 (2010) 2193-2204. |
[5] |
L.L. Yang, X.J. Zeng, A. Ditta, B. Feng, L.Z. Su, Y. Zhang, J. Adv. Ceram. 9 (2020) 312-319.
DOI URL |
[6] | A. Zolfagharian, A.Z. Kouzani, S.Y. Khoo, B. Nasri-Nasrabadi, A. Kaynak, Sens. Actuator A Phys. (2017) S1890618938X. |
[7] |
Z. Cheng, Y.E. Fang, Y. Liu, T. Qiao, L.I. Jianping, H. Qin, L. Cheng, L. Zhang, J. Adv. Ceram. 8 (2019) 399-407.
DOI URL |
[8] | A. Gannarapu, B.A. Gozen, Adv.Mater. Technol. 1 (2016) 1600047. |
[9] |
S.J. Joo, H.J. Hwang, H.S. Kim, Nanotechnology 25 (2014) 265601.
DOI URL |
[10] |
H.Y. Li, H.Y. Jing, Y.D. Han, G.Q. Lu, L.Y. Xu ,J. Alloys Compd. 576 (2016) 369-374.
DOI URL |
[11] |
H. Qin, J. Dong, Y.S. Lee, Robot Cim-Int Manuf 43 (2017) 179-187.
DOI URL |
[12] |
G.R. Greer, R.A. Street, Acta Mater 55 (2007) 6345-6349.
DOI URL |
[13] | A. Chortos, E. Hajiesmaili, J. Morales, D.R. Clarke, J.A. Lewis, Adv.Funct. Mater. 30 (2020) 1907375. |
[14] | N. Zhou, C. Liu, J.A. Lewis, D. Ham, Adv.Mater. 29 (2017) 1605198. |
[15] |
T.S. Wei, B.Y. Ahn, J. Grotto, J.A. Lewis, Adv. Mater. 30(2018)1703027.
DOI URL |
[16] | N. Kai, M.A. Citrin, H. Yang, X. Xia, J.R. Greer, Adv.Energy. Mater. 11 (2020) 2170019. |
[17] | B. Joseph, N. Philip, I. James, K.D. Costa, Addit Manuf (2018) S1618328828. |
[18] | D.K. Patel, A.H. Sakhaei, M. Layani, B. Zhang, Q. Ge, S. Magdassi, Adv.Mater. 29 (2017) 1606000. |
[19] |
M. Layani, M. Gruchko, O. Milo, I. Balberg, S. Magdassi, ACS Nano 3 (2009) 3537-3542.
DOI URL |
[20] | M. Schouten, G. Wolterink, A. Dijkshoorn, D. Kosmas, G. Krijnen, IEEE Sens. J. 20 (2020) 3042436. |
[21] |
J. Qu, Q. Wu, T. Clancy, Q. Fan, X. Liu, IEEE Sens. J. 20 (2020) 6971-6978.
DOI URL |
[22] |
Q. Liu, B. Xu, Y.N. Zhang, X.W. Wang, X.L. Wang, X.S. Wang, Opt. Laser Technol. 135 (2020) 106712.
DOI URL |
[23] |
H.L. Kao, C.H. Chuang, L.C. Chang, C.L. Cho, H.C. Chiu, Surf. Coat. Technol. 362 (2019) 328-332.
DOI URL |
[24] |
J. Wu, S.L. Hsu, M. Tsai, W. Hwang, Thin Solid Films 517 (2009) 5913-5917.
DOI URL |
[25] |
Z. Liu, Y. Su, K. Varahramyan, Thin Solid Films 478 (2005) 275-279.
DOI URL |
[26] |
J.J. Moyano, A. Gómez-Gómez, D. Pérez-Coll, M. Belmonte, P. Miranzo, M.I. Os-endi, Carbon N Y 151 (2019) 94-102.
DOI URL |
[27] |
F. Wang, Y.Q. Jiang, Y.J. Liu, F. Guo, W.Z. Fang, Z. Xu, C. Gao, Carbon N Y 159 (2020) 166-174.
DOI URL |
[28] |
Z. Zhao, G.X. Zhou, Z.H. Yang, X.Q. Cao, Y. Zhou, J. Adv. Ceram. 9 (2020) 403-412.
DOI URL |
[29] |
G.X. Zhou, C. Li, Z. Zhao, Y.Z. Qi, Y. Zhou, Carbon N Y 164 (2020) 215-223.
DOI URL |
[30] | H. Li, S. Liu, L. Li, Int. J. Bioprinting 2 (2016) 54-56. |
[31] |
K. Yasuda, R.C. Armstrong, R.E. Cohen, Rheol. Acta 20 (1981) 163-178.
DOI URL |
[1] | Zhong Zheng, Xuexi Zhang, Mingfang Qian, Jianchao Li, Muhammad Imran, Lin Geng. Ultra-high strength GNP/2024Al composite via thermomechanical treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 164-172. |
[2] | Zhen Ma, Huarui Zhang, Hanwei Fu, Yanzhao Yang, Jianji Wang, Ming Du, Hu Zhang. Insights into the rheological modeling of semi-solid metals: Theoretical and simulation study [J]. J. Mater. Sci. Technol., 2022, 100(0): 182-192. |
[3] | Zhiyong Liu, Wenyuan Shi, Teng Yang, Zhidong Zhang. Magic angles and flat Chern bands in alternating-twist multilayer graphene system [J]. J. Mater. Sci. Technol., 2022, 111(0): 28-34. |
[4] | Likui Zhang, Yao Chen, Qian Liu, Wenting Deng, Yaoqun Yue, Fanbin Meng. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 111(0): 57-65. |
[5] | Xinyuan Lv, Fang Ye, Laifei Cheng, Litong Zhang. 3D printing “wire-on-sphere” hierarchical SiC nanowires / SiC whiskers foam for efficient high-temperature electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 109(0): 94-104. |
[6] | Chi Liu, Xu-Qi Yang, Wei Ma, Xin-Zhe Wang, Hai-Yan Jiang, Wen-Cai Ren, Dong-Ming Sun. A silicon-graphene-silicon transistor with an improved current gain [J]. J. Mater. Sci. Technol., 2022, 104(0): 127-130. |
[7] | Qiaolei Li, Xiaolong An, Jingjing Liang, Yongsheng Liu, Kehui Hu, Zhigang Lu, Xinyan Yue, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Balancing flexural strength and porosity in DLP-3D printing Al2O3 cores for hollow turbine blades [J]. J. Mater. Sci. Technol., 2022, 104(0): 19-32. |
[8] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
[9] | Qianqian Huang, Gehuan Wang, Ming Zhou, Jing Zheng, Shaolong Tang, Guangbin Ji. Metamaterial electromagnetic wave absorbers and devices: Design and 3D microarchitecture [J]. J. Mater. Sci. Technol., 2022, 108(0): 90-101. |
[10] | Jingqi Chen, Xianlei Hu, Haitao Gao, Shu Yan, Shoudong Chen, Xianghua Liu. Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances [J]. J. Mater. Sci. Technol., 2022, 99(0): 9-17. |
[11] | Rui Guo, Qi Zheng, Lianjun Wang, Yuchi Fan, Wan Jiang. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 108-117. |
[12] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
[13] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[14] | Zhengzheng Guo, Penggang Ren, Zengping Zhang, Zhong Dai, Zhenxia Lu, Yanling Jin, Fang Ren. Fabrication of carbonized spent coffee grounds/graphene nanoplates/cyanate ester composites for superior and highly absorbed electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 102(0): 123-131. |
[15] | Xun Fan, Fengchao Wang, Qiang Gao, Yu Zhang, Fei Huang, Ronglin Xiao, Jianbin Qin, Han Zhang, Xuetao Shi, Guangcheng Zhang. Nature inspired hierarchical structures in nano-cellular epoxy/graphene-Fe3O4 nanocomposites with ultra-efficient EMI and robust mechanical strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 177-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||