J. Mater. Sci. Technol. ›› 2022, Vol. 108: 90-101.DOI: 10.1016/j.jmst.2021.07.055
• Research Article • Previous Articles Next Articles
Qianqian Huanga, Gehuan Wanga, Ming Zhoua, Jing Zhengb,*(), Shaolong Tangc, Guangbin Jia,*(
)
Received:
2021-07-04
Revised:
2021-07-24
Accepted:
2021-07-26
Published:
2021-10-27
Online:
2021-10-27
Contact:
Jing Zheng,Guangbin Ji
About author:
gbji@nuaa.edu.cn (G. Ji).Qianqian Huang, Gehuan Wang, Ming Zhou, Jing Zheng, Shaolong Tang, Guangbin Ji. Metamaterial electromagnetic wave absorbers and devices: Design and 3D microarchitecture[J]. J. Mater. Sci. Technol., 2022, 108: 90-101.
Fig. 1. (a) Applications of metamaterials [16], [17], [18]. (b) Ⅰ Early structure of MMA [19]. Ⅱ Metamaterials are bonded to magnetic metals [20]. Ⅲ bionic moth-eye array design [21]. Ⅳ new artificial design [22]. Ⅴ 3D printing for preparation of MMA [23].
Fig. 2. Some common ordinary absorbing materials. Carbon-based materials [33], [34], [35], [36]. Metal-based absorbing materials [37], [38], [39] and composite absorbing materials [40], [41], [42].
Materials | d (mm) | RL (min) | EAB (GHz) | Absorbing Band/Rate | Refs. |
---|---|---|---|---|---|
rGO-Fe3O4 | 2.10 | -48.6 | 6.32 | 11.68-18 | [ |
CNTs-Ti3C2 | 3.95 | -24.4 | 4.2 | 8.2-12.4 | [ |
SiOC | 3.00 | -39.13 | 4.64 | — | [ |
Fe@C | 4.60 | -42.7 | 3.68 | — | [ |
CoFe2O4/C/PANIa | 2.57 | -51.81 | 8.88 | — | [ |
carbonized cotton/wax | — | — | 67 | 7-40 75-110 | [ |
carbonyl iron / MWCNT | — | -55 | 38 | 2-40 | [ |
dielectric and metallic atoms | — | — | 9.45 9.80 | 97% 93% | [ |
Table 1. Comparison of absorbing ability between traditional absorbers and MMAs.
Materials | d (mm) | RL (min) | EAB (GHz) | Absorbing Band/Rate | Refs. |
---|---|---|---|---|---|
rGO-Fe3O4 | 2.10 | -48.6 | 6.32 | 11.68-18 | [ |
CNTs-Ti3C2 | 3.95 | -24.4 | 4.2 | 8.2-12.4 | [ |
SiOC | 3.00 | -39.13 | 4.64 | — | [ |
Fe@C | 4.60 | -42.7 | 3.68 | — | [ |
CoFe2O4/C/PANIa | 2.57 | -51.81 | 8.88 | — | [ |
carbonized cotton/wax | — | — | 67 | 7-40 75-110 | [ |
carbonyl iron / MWCNT | — | -55 | 38 | 2-40 | [ |
dielectric and metallic atoms | — | — | 9.45 9.80 | 97% 93% | [ |
Fig. 3. (a) Narrow frequency MMA [6]. (b) Dual-frequency terahertz MMA [79]. (c) The unit cell of MMA with polarization insensitivity [81]. (d) MMA with wide-Angle incident absorption characteristics [82]. (e) Schematic drawing of tunable MMA under external loading [86]. (f) Bionic simulation of MMA anti-reflection silicon column array [89].
Fig. 4. (a) The sketch-map of ferrite-wire MMA unit cell. Front view, side view, and structure parameters [96]. (b) Unit cell of the ferrite based tunable MMA, side views and schematic representation of measurements [97]. (c) Schematic diagram of the magnetically tunable Mie resonance-based dielectric metamaterial, and four sets of phases representing the dynamic changes of the magnetic field distribution in the unit cell [99]. (d) Schematic view of unit cells of the tunable MMA, and simulate the absorption of this MMA in different external magnetic fields [100].
Fig. 5. (a) The microstructures of moth eye. (b) FCIP distribution in absorber, in which the mass ratio of FCIP to PU was 2.5: 1. (c) Experiment and simulation diagram of RL of MMA [21]. (d) Pachliopta aristolochiae biomimetic MMA and corresponding current vortex [115]. (e) The frustules and the design of diatom frustule-inspired nanoparticle arrays [116].
Fig. 6. (a) Schematic representation of a unit cell of the three-layer TiN MMA. (b) SEM image of the fabricated TiN absorber. (c) Simulated and measured absorption spectra for the TiN MMA. (d) The absorption spectra for the Au and Ag MMA [127]. (e) Schematic 3D view of a unit cell of the periodic pattern. (f) Simulated and measured RL of the patterned magnetic absorber. (g) The picture of the patterned absorber [130]. (h) RL for the flat absorbers consisting of the CIFs-based composite at different thicknesses. (i) 3D structure of the as-designed MMA. (j) The experiment simulation absorption spectra [131].
Fig. 7. (a) The split ring resonator unit-cell and the four basic units with different rotation angles are composed of the super unit [141]. (b) The perspective and front view of a pyramidal MMA, and comparison of absorbing performance between pyramidal absorber and other absorbers [142]. (c) Unit cell geometry of the broadband absorber and simulated reflection coefficient for polarization angles under normal incidence [143]. (d) 3D preparation of honeycomb MMA [144].
Fig. 8. (a) 3D printing of multiple layers of MMA. (b) RL of four waves with different incident angles [145]. (c) Four honeycomb 3D models with different parameters. (d) A cross section of a honeycomb structure [149]. (e) Carbon sphere synthesis process and electromagnetic simulation diagram [150]. (f) Dual-principles strategy for the preparation of dielectric absorbers [151].
[1] | R.M. Walser, in: Proceedings of the Complex Mediums. Beyond Linear Isotropic Dielectrics, 2001, pp. 1-15. |
[2] |
S. Rengarajan, R.M. Walser, J. Appl. Phys. 81 (1997) 4278-4280.
DOI URL |
[3] |
G. Deng, K. Lv, H. Sun, J. Yang, Z. Yin, B. Chi, J. Phys. D Appl. Phys. 54 (2021) 165301.
DOI URL |
[4] |
D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, Science 314 (2006) 977-980.
PMID |
[5] |
R.W. Ziolkowski, Phys. Rev. E 70 (2004) 046608.
DOI URL |
[6] |
N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100 (2008) 207402.
DOI URL |
[7] |
V.M. Petrov, V.V. Gagulin, Inorg. Mater. 37 (2001) 93-98.
DOI URL |
[8] |
G. X.Tong, J.H. Yuan, J. Ma, J.G. Guan, W.H. Wu, L.C. Li, Mater. Chem. Phys. 129 (2011) 1189-1194.
DOI URL |
[9] |
Y. Cui, K.H. Fung, J. Xu, H. Ma, Y. Jin, S. He, Nano Letts. 12 (2012) 1443-1447.
DOI URL |
[10] |
M.K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, Adv. Mater. 23 (2011) 5410-5414.
DOI URL |
[11] |
C. Hu, L. Liu, Z. Zhao, X. Chen, X. Luo, Opt. Express 17 (2009) 16745-16749.
DOI URL |
[12] |
H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla, Opt. Express 16 (2008) 7181-7188.
PMID |
[13] |
T. Wu, W. Li, J. Yang, J. Ma, L. Chen, J. Guan, J. Phys. D Appl. Phys. 53 (2020) 105003.
DOI URL |
[14] |
N. Bai, F. Zhong, J. Shen, H. Fan, X. Sun, Phys. D Appl. Phys. 54 (2021) 095101.
DOI URL |
[15] |
D. Winson, B. Choudhury, N. Selvakumar, H. Barshilia, R.U. Nair, IEEE Trans. Antennas Propag. 67 (2019) 5446-5452.
DOI URL |
[16] |
N. Fang, H. Lee, C. Sun, X. Zhang, Science 308 (2005) 534-537.
DOI URL |
[17] | M.T. Islam, A. Al Sayem, M.I. Reja, Mater. Today Commun. 26 (2021) 101840. |
[18] |
J.B. Pendry, D. Schurig, D.R. Smith, Science 312 (2006) 1780-1782.
PMID |
[19] | M. Amiri, F. Tofigh, N. Shariati, J. Lipman, M. Abolhasan, IEEE Int. Things J. 8 (2021) 4105-4131. |
[20] |
Z. Lei, G. Tan, Q. Man, M. Ning, S. Wang, S. Chen, Mater. Res. Bull. 137 (2021) 111199.
DOI URL |
[21] |
L. Huang, Y. Duan, X. Dai, Y. Zeng, G. Ma, Y. Liu, Small 15 (2019) 1902730.
DOI URL |
[22] | R.K. Mishra, R.D. Gupta, S. Datar, Plasmonics (2021) 1557-1955. |
[23] |
Z. Pei, Y. Xu, F. Wei, T. Liu, D. Su, J. Magn. Magn. Mater. 493 (2020) 165742.
DOI URL |
[24] |
Y. Liu, X. Zhang, Chem. Soc. Rev. 40 (2011) 2494-2507.
DOI URL |
[25] |
C. Hu, X. Li, Q. Feng, X.N. Chen, X. Luo, J. Appl. Phys. 108 (2010) 053103.
DOI URL |
[26] |
J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47 (1999) 2075-2084.
DOI URL |
[27] |
J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76 (1996) 4773-4776.
PMID |
[28] |
M. Decker, R. Zhao, C.M. Soukoulis, S. Linden, M. Wegener, Opt. Lett. 35 (2010) 1593-1595.
DOI PMID |
[29] |
Y.C. Guo, G. Goussetis, A.P. Feresidis, J.C. Vardaxoglou, IEEE Trans. Microw. Theory Tech. 53 (2005) 1462-1468.
DOI URL |
[30] |
G.V. Eleftheriades, O. Siddiqui, A.K. Iyer, IEEE Microw. Wirel. Comp. Lett. 13 (2003) 51-53.
DOI URL |
[31] | M. Albani M, IEEE Trans. Antennas Propag. 57 (2009) 24 95-24 97. |
[32] |
H. Li, J. Xiong, S. He, IEEE Antennas Wirel. Propag. Lett. 8 (2009) 1107-1110.
DOI URL |
[33] | L.C. Folgueras, E.L. Nohara, R. Faez, M.C. Rezende, Mater. Res. 10 (2007) 95-99. |
[34] |
N. Joseph, J. Varghese, M.T. Sebastian, Compos. Part B 123 (2017) 271-278.
DOI URL |
[35] |
L. Wang, B. Wen, Y. Qiu, H. Yang, Synth. Metal. 261 (2020) 116301.
DOI URL |
[36] |
Z. Xu, M. Liang, X. He, Q. Long, J. Yu, K. Xie, Compos. Part A Appl. Sci. Manuf. 119 (2019) 111-118.
DOI URL |
[37] | M. Green, Z. Liu, P. Xiang, X. Tan, F. Huang, L. Liu, Mater. Today Chem. 9 (2018) 140-148. |
[38] |
B. Iqbal, A. Laybourn, A. Ul-Hamid, M. Zaheer, Ceram. Int. 47 (2021) 12433-12441.
DOI URL |
[39] |
X. Wang, Guan Y, R. Zhang, P. Zhou, Z. Song, M. Wang, Ceram. Int. 47 (2021) 643-653.
DOI URL |
[40] |
D. Guo, H. Yuan, X. Wang, C. Zhu, Y. Chen, ACS Appl. Mater. Interfaces 12 (2020) 9628-9636.
DOI URL |
[41] |
M. Yu, Q. Tao, H. Dong, T. Huang, Y. Li, Y. Xiao, J. Magn. Reson. 317 (2020) 106775.
DOI URL |
[42] |
W.C. Yu, T. Wang, Y.H. Liu, Z.G. Wang, L. Xu, J.H. Tang, Chem. Eng. J. 393 (2020) 124644.
DOI URL |
[43] | R. Ma, Y. Tian, H. Zhao, G. Zhang, H. Zhao, J. Mater. Sci. Technol. 24 (2008) 628-632. |
[44] |
Z. Wengiang, X. Yonggang, Y. Liming, C. Jun, Z. Deyuan, J. Mater. Sci. Technol. 28 (2012) 913-919.
DOI URL |
[45] |
Y. Ma, C. Lv, Z. Tong, C.F. Zhao, Y.S. Li, Y.Y. Hu, J. Mater. Chem. C 8 (2020) 9945-9953.
DOI URL |
[46] |
G. Salimbeygi, K. Nasouri, A.M. Shoushtari, R. Malek, F. Mazaheri, Macromol. Res. 23 (2015) 741-748.
DOI URL |
[47] |
H. Wei, J. Dong, X. Fang, W. Zheng, Y. Sun, Y. Qian, Compos. Sci. Technol. 169 (2019) 52-59.
DOI URL |
[48] |
X. Hao, X. Yin, L. Zhang, L. Cheng, J. Mater. Sci. Technol. 29 (2013) 249-254.
DOI URL |
[49] |
J. Xu, L. Xia, J. Luo, S. Lu, X. Huang, B. Zhong, ACS Appl. Mater. Interfaces 12 (2020) 20775-20784.
DOI URL |
[50] |
N. Gao, W.P. Li, W.S. Wang, P. Liu, Y. M.Cui, L. Guo, ACS Appl. Mater. Interfaces 12 (2020) 14416-14424.
DOI URL |
[51] |
P. Song, B. Liu, H. Qiu, X. Shi, D. Cao, J. Gu, Compos. Commun. 24 (2021) 100653.
DOI URL |
[52] |
Y.L. Wang, S.H. Yang, H.Y. Wang, G.S. Wang, X.B. Sun, P.G. Yin, Carbon 167 (2020) 4 85-4 94.
DOI URL |
[53] |
X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang, L. Guo, G.S. Wang, Adv. Funct. Mater. 28 (2018) 1800761.
DOI URL |
[54] |
M. Zhang, X. Fang, Y. Zhang, J. Guo, C. Gong, D. Estevez, Nanotechnology 31 (2020) 275707.
DOI URL |
[55] |
Z. Zhang, J. Tan, W. Gu, H. Zhao, J. Zheng, B. Zhang, Chem. Eng. J. 395 (2020) 125190.
DOI URL |
[56] |
J. Zhao, J. Zhang, L. Wang, J. Li, T. Feng, J. Fan, Compos. Commun. 22 (2020) 100486.
DOI URL |
[57] |
J. Zhao, J. Zhang, L. Wang, S. Lyu, W. Ye, B.B. Xu, Compos. Part A Appl. 129 (2020) 105714.
DOI URL |
[58] |
W. Gu, X. Cui, J. Zheng, J. Yu, Y. Zhao, G. Ji, J. Mater. Sci. Technol. 67 (2021) 265-272.
DOI URL |
[59] |
Y. Yang, L. Xia, T. Zhang, B. Shi, L. Huang, B. Zhong, Chem. Eng. J. 352 (2018) 510-518.
DOI URL |
[60] |
Z. Jiang, H. Si, X. Chen, H. Liu, L. Zhang, Y. Zhang, Compos. Commun. 22 (2020) 100503.
DOI URL |
[61] |
M. Zhang, Z. Jiang, H. Si, X. Zhang, C. Liu, C. Gong, Phys. Chem. Chem. Phys. 22 (2020) 8639-8646.
DOI URL |
[62] |
S. Gao, G.S. Wang, L. Guo, S.H. Yu, Small 16 (2020) 1906668.
DOI URL |
[63] |
T. Kim, J.Y. Bae, N. Lee, H.H. Cho, Adv. Funct. Mater. 29 (2019) 1807319.
DOI URL |
[64] | N. Engheta, IEEE APS 2 (2002) 392-395. |
[65] | C.M. Watts, X. Liu, W.J. Padilla, Adv. Mater. 24 (2012) OP98-OP120. |
[66] |
P.Y. Chen, M. Farhat, A. Alu, Phys. Rev. Lett. 106 (2011) 105503.
DOI URL |
[67] |
H. Liu, X. Zhao, Y. Yang, Q. Li, J. Lv, Adv. Mater. 20 (2008) 2050-2054.
DOI URL |
[68] |
Y. Wu, Y. Lai, Z.Q. Zhang, Phys. Rev. Lett. 107 (2011) 105506.
DOI URL |
[69] |
Y. Huang, X. Yuan, M. Chen, W.L. Song, J. Chen, Q. Fan, Carbon 144 (2019) 449-456.
DOI URL |
[70] |
X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu, T. Li, J. Mater. Sci. Technol. 72 (2021) 93-103.
DOI URL |
[71] |
X. Liu, N. Chai, Z. Yu, H. Xu, X. Li, J. Liu, J. Mater. Sci. Technol. 35 (2019) 2859-2867.
DOI URL |
[72] |
C. Chen, S. Zeng, X. Han, Y. Tan, W. Feng, H. Shen, J. Mater. Sci. Technol. 54 (2020) 223-229.
DOI |
[73] | H. Huang, Y. Gao, C.F. Fang, A.M. Wu, X.L. Dong, B.S. Kim, J. Mater. Sci. Tech- nol. 34 (2018) 496-502. |
[74] |
T. Hou, Z. Jia, A. Feng, Z. Zhou, X. Liu, H. Lv, J. Mater. Sci. Technol. 68 (2021) 61-69.
DOI URL |
[75] |
W.L. Song, Z. Zhou, L.C. Wang, X.D. Cheng, M. Chen, R. He, ACS Appl. Mater. Interfaces 9 (2017) 43179-43187.
DOI URL |
[76] |
Y. Huang, W.L. Song, C. Wang, Y. Xu, W. Wei, M. Chen, Compos. Sci. Technol. 162 (2018) 206-214.
DOI URL |
[77] |
C. Wang, M. Huang, Z. Zhang, W. Xu, J. Mater. Sci. Technol. 53 (2020) 37-40.
DOI URL |
[78] |
C. Hu, X. Li, Q. Feng, X.N. Chen, X. Luo, Opt. Express 18 (2010) 6598-6603.
DOI URL |
[79] |
Q.Y. Wen, H.W. Zhang, Y.S. Xie, Q.H. Yang, Y.L. Liu, Appl. Phys. Lett. 95 (2009) 241111.
DOI URL |
[80] |
C. Cen, Z. Yi, G. Zhang, Y. Zhang, C. Liang, X. Chen, Results Phys. 14 (2019) 102463.
DOI URL |
[81] |
B. Zhu, Z.B. Wang, Z.Z. Yu, Q. Zhang, J.M. Zhao, Y.J. Feng, Chin. Phys. Lett. 26 (2009) 114102.
DOI URL |
[82] |
H. Tao, C.M. Bingham, A.C. Strikwerda, D. Pilon, D. Shrekenhamer, N.I. Landy, Phys. Rev. B 78 (2008) 241103.
DOI URL |
[83] |
W.L. Chan, H.T. Chen, A.J. Taylor, I. Brener, Appl. Phys. Lett. 94 (2009) 213511.
DOI URL |
[84] |
H. Yuan, B. Zhu, Y. Feng, J. Appl. Phys. 117 (2015) 173103.
DOI URL |
[85] |
A.Q. Liu, W.M. Zhu, D.P. Tsai, N.I. Zheludev, J. Opt. 14 (2012) 114009.
DOI URL |
[86] |
F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Appl. Phys. Lett. 106 (2015) 091907.
DOI URL |
[87] |
M. Srinivasarao, Chem. Rev. 99 (1999) 1935-1961.
PMID |
[88] | L. Huang, Y. Duan, J. Liu, Y. Zeng, G. Ma, H. Pang, Adv. Opt. Mater. 8 (2020) 20 0 0 012. |
[89] |
W.L. Min, B. Jiang, P. Jiang, Adv. Mater. 20 (2008) 3914-3918.
DOI URL |
[90] |
S. Ban, H. Meng, X. Zhai, X. Xue, Q. Lin, H. Li, J. Phys. D Appl. Phys. 54 (2021) 174001.
DOI URL |
[91] | O. Acher, S. Dubourg, Phys. Rev. B 77 (2008) 104 4 40. |
[92] |
D. Borah, N.S. Bhattacharyya, J. Electron. Mater. 46 (2017) 226-232.
DOI URL |
[93] |
Y. He, P. He, S.D. Yoon, P.V. Parimi, F.J. Rachford, V.G. Harris, J. Magn. Magn. Mater. 313 (2007) 187-191.
DOI URL |
[94] |
F.J. Rachford, D.N. Armstead, V.G. Harris, C. Vittoria, Phys. Rev. Lett. 99 (2007) 057202.
DOI URL |
[95] |
H. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, Y. Bai, Appl. Phys. Lett. 91 (2007) 131107.
DOI URL |
[96] |
Y.J. Yang, Y.J. Huang, G.J. Wen, J.P. Zhong, H.B. Sun, O. Gordon, Chin. Phys. B 21 (2012) 038501.
DOI URL |
[97] |
Y. Huang, G. Wen, W. Zhu, J. Li, L.M. Si, M. Premaratne, Opt. Express 22 (2014) 16408-16417.
DOI URL |
[98] |
X. Liu, Z. Ren, T. Yang, L. Chen, Q. Wang, J. Zhou, J. Mater. Sci. Technol. 62 (2021) 249-253.
DOI URL |
[99] |
K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, Sci. Rep. 4 (2014) 7001.
DOI URL |
[100] |
W. Li, J. Wei, W. Wang, D. Hu, Y. Li, J. Guan, Mater. Des. 110 (2016) 27-34.
DOI URL |
[101] | N.S. Ha, G. Lu, Compos. Part B 181 (2020) 107406. |
[102] |
M. Thielen, C.N.Z. Schmitt, S. Eckert, T. Speck, R. Seidel, Bioinspir. Biomim. 8 (2013) 025001.
DOI URL |
[103] |
A. Buehrig-Polaczek, C. Fleck, T. Speck, P. Schueler, S.F. Fischer, M. Caliaro, Bioinspir. Biomim. 11 (2016) 045002.
DOI URL |
[104] |
N.S. Ha, V.T. Le, N.S. Goo, J. Bionic Eng. 15 (2018) 57-68.
DOI URL |
[105] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[106] |
W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen, G. Ji, Nano Micro Lett. 13 (2021) 102.
DOI URL |
[107] |
G. Ma, L. Xia, H. Yang, X. Wang, T. Zhang, X. Huang, Chem. Eng. J. 418 (2021) 129429.
DOI URL |
[108] |
H.K. Zhang, W.J. Wu, Z. Kang, X.Q. Feng, Comput. Methods Appl. Mech. Eng 372 (2020) 113399.
DOI URL |
[109] | C.G. Bernhard, W.H. Miller, Acta Physiol. Scand. Suppl. 56 (1962) 385-386. |
[110] |
M.J. Huang, C.R. Yang, Y.C. Chiou, R.T. Lee, Sol. Energy Mater. Sol. Cells 92 (2008) 1352-1357.
DOI URL |
[111] |
J.V. Anguita, M. Ahmad, S. Haq, J. Allam, S.R.P. Silva, Sci. Adv. 2 (2016) e1501238.
DOI URL |
[112] |
W.K. Kuo, J.J. Hsu, C.K. Nien, H.H. Yu, ACS Appl. Mater. Interfaces 8 (2016) 32021-32030.
DOI URL |
[113] |
T. Mouterde, G. Lehoucq, S. Xavier, A. Checco, C.T. Black, A. Rahman, Nat. Mater. 16 (2017) 658-663.
DOI URL |
[114] |
W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Chem. Mater. 21 (2009) 33-40.
DOI URL |
[115] |
L. Huang, Y. Duan, J. Liu, Y. Zeng, G. Ma, H. Pang, Compos. Sci. Technol. 204 (2021) 108640.
DOI URL |
[116] |
A. Li, X. Zhao, G. Duan, S. Anderson, X. Zhang, Adv. Funct. Mater. 29 (2019) 1809029.
DOI URL |
[117] |
J. Parkinson, R. Gordon, Trends Biotechnol. 17 (1999) 190-196.
PMID |
[118] | J. Bradbury, Plos Biol. 2 (2004) 1512-1515. |
[119] | A. Li, W. Zhang, R. Ghaffarivardavagh, X. Wang, S.W. Anderson, X. Zhang, Mi-crosyst. Nanoeng. 2 (2016) 16064. |
[120] |
A. Bozarth, U.G. Maier, S. Zauner, Appl. Microbiol. Biotechnol. 82 (2009) 195-201.
DOI PMID |
[121] |
C. Jun, W. Xiaoning, L. Aobo, S.W. Anderson, Z. Xin, Extreme Mech. Lett. 4 (2015) 186-192.
DOI URL |
[122] |
J. Beermann, R.L. Eriksen, T. Sondergaard, T. Holmgaard, K. Pedersen, S.I. Bozhevolnyi, New J. Phys. 15 (2013) 073007.
DOI URL |
[123] |
J. Hao, J. Wang, X. Liu, W.J. Padilla, L. Zhou, M. Qiu, Appl. Phys. Lett. 96 (2010) 251104.
DOI URL |
[124] |
K. Aydin, V.E. Ferry, R.M. Briggs, H.A. Atwater, Nat. Commun. 2 (2011) 517.
DOI URL |
[125] |
G.V. Naik, J. Kim, A. Boltasseva, Opt. Mater. Express 1 (2011) 1090-1099.
DOI URL |
[126] |
U. Guler, A. Boltasseva, V.M. Shalaev, Science 344 (2014) 263-264.
DOI URL |
[127] |
W. Li, U. Guler, N. Kinsey, G.V. Naik, A. Boltasseva, J. Guan, Adv. Mater. 26 (2014) 7959-7965.
DOI |
[128] |
B. Wang, J. Wei, L. Qiao, T. Wang, F. Li, J. Magn. Magn. Mater. 324 (2012) 761-765.
DOI URL |
[129] |
B. Wang, J. Wei, Y. Yang, T. Wang, F. Li, J. Magn. Magn. Mater. 323 (2011) 1101-1103.
DOI URL |
[130] |
E. Li, T. Wu, W. Wang, P. Zhai, J. Guan, J. Appl. Phys. 116 (2014) 044110.
DOI URL |
[131] |
C. Long, S. Yin, W. Wang, W. Li, J. Zhu, J. Guan, Sci. Rep. 6 (2016) 21431.
DOI URL |
[132] |
S. He, F. Ding, L. Mo, F. Bao, Prog. Electromagn. Res. 147 (2014) 69-79.
DOI URL |
[133] |
W. Ma, Y. Wen, X. Yu, Opt. Express 21 (2013) 30724-30730.
DOI URL |
[134] | L. Meng, D. Zhao, Q. Li, M. Qiu, Opt. Express 21 (2013) A111-A122. |
[135] |
Y. Pang, H. Cheng, Y. Zhou, J. Wang, J. Appl. Phys. 113 (2013) 084907.
DOI URL |
[136] |
J.S. Chieh, B. Dick, S. Loui, J.D. Rockway, IEEE Antennas Wirel. Propag. Lett. 13 (2014) 201-204.
DOI URL |
[137] |
G.L. Huang, S.G. Zhou, C.Y. Sim, T.H. Chio, T. Yuan, IEEE Trans. Antennas Propag. 65 (2017) 3897-3904.
DOI URL |
[138] |
X. Zhou, J. Deng, C. Fang, W. Lei, Y. Song, Z. Zhang, J. Mater. Sci. Technol. 60 (2021) 27-34.
DOI URL |
[139] | M. Ahmadloo, P. Mousavi, IEEE IMS 6 (2013) 3. |
[140] |
Y. Yoon, D. Lim, M.M. Tentzeris, S. Lim, Microw. Opt. Tech. Lett. 60 (2018) 1622-1630.
DOI URL |
[141] |
S.D. Assimon, V. Fusco, Sci. Rep. 9 (2019) 12334.
DOI URL |
[142] |
X. Chen, Z. Wu, Z. Zhang, Y. Zou, Opt. Laser Technol. 124 (2020) 105972.
DOI URL |
[143] |
S. Ghosh, S. Lim, IEEE Antennas Wirel. Propag. Lett. 17 (2018) 2379-2383.
DOI URL |
[144] |
W. Jiang, L. Yan, H. Ma, Y. Fan, J. Wang, M. Feng, Sci. Rep. 8 (2018) 4817.
DOI PMID |
[145] |
D. Yang, Y. Yin, Z. Zhang, D. Li, Y. Cao, Mater. Lett. 281 (2020) 128571.
DOI URL |
[146] |
L. Yin, X. Tian, Z. Shang, D. Li, Mater. Lett. 239 (2019) 132-135.
DOI URL |
[147] | R. Kronberger, P. Soboll, in: Proceedings of the IEEE 46th European Microwave Conference, 2016, pp. 596-599. |
[148] | K.G. Kjelgard, D.T. Wisland, T.S. Lande, in: Proceedings of the IEEE 48th Euro- pean Microwave Conference, 2018, pp. 859-862. |
[149] |
J. Sheng, Y. Zhang, L. Liu, B. Quan, N. Zhang, G. Ji, J. Alloy. Compd. 809 (2019) 151866.
DOI URL |
[150] |
N. Zhang, W. Gu, Y. Zhao, J. Zheng, C. Pei, F. Fan, J. Mater. Sci.: Mater. Electron. 32 (2021) 25809-25819.
DOI URL |
[151] |
B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao, L. Liu, Nano Res. 14 (2021) 1495-1501.
DOI URL |
[1] | Qiaolei Li, Xiaolong An, Jingjing Liang, Yongsheng Liu, Kehui Hu, Zhigang Lu, Xinyan Yue, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Balancing flexural strength and porosity in DLP-3D printing Al2O3 cores for hollow turbine blades [J]. J. Mater. Sci. Technol., 2022, 104(0): 19-32. |
[2] | Minmin Zhu, Haizhong Zhang, Shoo Wen Long Favier, Yida Zhao, Huilu Guo, Zehui Du. A general strategy towards controllable replication of butterfly wings for robust light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 105(0): 286-292. |
[3] | Mehmet Cagirici, Pan Wang, Fern Lan Ng, Mui Ling Sharon Nai, Jun Ding, Jun Wei. Additive manufacturing of high-entropy alloys by thermophysical calculations and in situ alloying [J]. J. Mater. Sci. Technol., 2021, 94(0): 53-66. |
[4] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
[5] | D.X. Han, L. Zhao, S.H. Chen, G. Wang, K.C. Chan. Critical transitions in the shape morphing of kirigami metallic glass [J]. J. Mater. Sci. Technol., 2021, 61(0): 204-212. |
[6] | Bing Zhang, Jiankang He, Gaofeng Zheng, Yuanyuan Huang, Chaohung Wang, Peisheng He, Fanping Sui, Lingchao Meng, Liwei Lin. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2021, 82(0): 135-143. |
[7] | Haifang Liu, Haijun Su, Zhonglin Shen, Di Zhao, Yuan Liu, Yinuo Guo, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Preparation of large-size Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 218-223. |
[8] | Pan Wang, Xinwei Li, Shumin Luo, Mui Ling Sharon Nai, Jun Ding, Jun Wei. Additively manufactured heterogeneously porous metallic bone with biostructural functions and bone-like mechanical properties [J]. J. Mater. Sci. Technol., 2021, 62(0): 173-179. |
[9] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
[10] | Chenchong Wang, Minghao Huang, Zhen Zhang, Wei Xu. Dual band metamaterial absorber: Combination of plasmon and Mie resonances [J]. J. Mater. Sci. Technol., 2020, 53(0): 37-40. |
[11] | Xiao You, Jinshan Yang, Mengmeng Wang, Hongda Wang, Le Gao, Shaoming Dong. Interconnected graphene scaffolds for functional gas sensors with tunable sensitivity [J]. J. Mater. Sci. Technol., 2020, 58(0): 16-23. |
[12] | Liying Han, Cunshan Wang, Zhengwei Li. Mechanical, forming and biological properties of Ti-Fe-Zr-Y alloys prepared by 3D printing [J]. J. Mater. Sci. Technol., 2019, 35(7): 1323-1333. |
[13] | Kai Sun, Jiahao Xin, Yaping Li, Zhongyang Wang, Qing Hou, Xiaofeng Li, Xinfeng Wu, Runhua Fan, Kwang Leong Choy. Negative permittivity derived from inductive characteristic in the percolating Cu/EP metacomposites [J]. J. Mater. Sci. Technol., 2019, 35(11): 2463-2469. |
[14] | E. Murr Lawrence. Frontiers of 3D Printing/Additive Manufacturing: from Human Organs to Aircraft Fabrication† [J]. J. Mater. Sci. Technol., 2016, 32(10): 987-995. |
[15] | Sarath Ramadurgam, Tzu-Ging Lin, Chen Yang. Tailoring Optical and Plasmon Resonances in Core-shell and Core-multishell Nanowires for Visible Range Negative Refraction and Plasmonic Light Harvesting: A Review [J]. J. Mater. Sci. Technol., 2015, 31(6): 533-541. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||