J. Mater. Sci. Technol. ›› 2022, Vol. 108: 82-89.DOI: 10.1016/j.jmst.2021.07.057
• Research Article • Previous Articles Next Articles
Zhuang Tanga,b, Kai Ninga, Zhiyao Fua, Ze Lianc, Kangning Wud,*(), Shoudao Huangb
Received:
2021-05-26
Revised:
2021-07-29
Accepted:
2021-07-30
Published:
2021-10-29
Online:
2021-10-29
Contact:
Kangning Wu
About author:
* E-mail address: wukning@xjtu.edu.cn (K. Wu).Zhuang Tang, Kai Ning, Zhiyao Fu, Ze Lian, Kangning Wu, Shoudao Huang. Significantly enhanced varistor properties of CaCu3Ti4O12 based ceramics by designing superior grain boundary: Deepening and broadening interface states[J]. J. Mater. Sci. Technol., 2022, 108: 82-89.
Samples | a (Å) | ρth (g cm-3) | ρex (g cm-3) | ρr (%) |
---|---|---|---|---|
CCTO-SCTO | 7.4030 | 5.21 | 4.77 | 91.6 |
0.1YCCTO-SCTO | 7.4024 | 5.23 | 5.02 | 96.0 |
0.5YCCTO-SCTO | 7.3974 | 5.26 | 4.76 | 90.5 |
0.9YCCTO-SCTO | 7.3966 | 5.29 | 4.53 | 85.6 |
Table 1. Lattice constant (a), theoretical density (ρth), experimental density (ρex), and relative density (ρr) of the YCCTO-SCTO composite samples.
Samples | a (Å) | ρth (g cm-3) | ρex (g cm-3) | ρr (%) |
---|---|---|---|---|
CCTO-SCTO | 7.4030 | 5.21 | 4.77 | 91.6 |
0.1YCCTO-SCTO | 7.4024 | 5.23 | 5.02 | 96.0 |
0.5YCCTO-SCTO | 7.3974 | 5.26 | 4.76 | 90.5 |
0.9YCCTO-SCTO | 7.3966 | 5.29 | 4.53 | 85.6 |
Elements (wt%) | CCTO-SCTO | 0.1YCCTO-SCTO | 0.5YCCTO-SCTO | 0.9YCCTO-SCTO | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Empty Cell | A1 | A2 | A3 | B1 | B2 | B3 | C1 | C2 | C3 | D1 | D2 | D3 |
Ca | 6.13 | 2.42 | 0.58 | 6.45 | 3.27 | 0.88 | 5.92 | 3.53 | 0.33 | 5.77 | 2.84 | 0.34 |
Sr | 0.00 | 14.31 | 49.72 | 0.00 | 13.41 | 47.32 | 0.00 | 12.60 | 44.03 | 0.00 | 12.07 | 39.39 |
Y | 0.00 | 0.00 | 0.00 | 0.30 | 0.99 | 4.11 | 0.36 | 1.86 | 14.78 | 2.83 | 4.77 | 20.90 |
Table 2. Ca/Sr distribution in various area of YCCTO-SCTO composite ceramic samples.
Elements (wt%) | CCTO-SCTO | 0.1YCCTO-SCTO | 0.5YCCTO-SCTO | 0.9YCCTO-SCTO | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Empty Cell | A1 | A2 | A3 | B1 | B2 | B3 | C1 | C2 | C3 | D1 | D2 | D3 |
Ca | 6.13 | 2.42 | 0.58 | 6.45 | 3.27 | 0.88 | 5.92 | 3.53 | 0.33 | 5.77 | 2.84 | 0.34 |
Sr | 0.00 | 14.31 | 49.72 | 0.00 | 13.41 | 47.32 | 0.00 | 12.60 | 44.03 | 0.00 | 12.07 | 39.39 |
Y | 0.00 | 0.00 | 0.00 | 0.30 | 0.99 | 4.11 | 0.36 | 1.86 | 14.78 | 2.83 | 4.77 | 20.90 |
Parameters | CCTO-SCTO | 0.1YCCTO-SCTO | 0.5YCCTO-SCTO | 0.9YCCTO-SCTO |
---|---|---|---|---|
Eb (kV cm-1) | 25.34 | 32.36 | 35.82 | 22.42 |
α | 7.28 | 8.09 | 14.65 | 8.33 |
Ugb (V) | 8.82 | 20.68 | 24.42 | 15.86 |
Table 3. Breakdown field (Egb), nonlinear coefficient (α), withstood voltage on single grain boundary (Ugb) of the YCCTO-SCTO composite ceramics.
Parameters | CCTO-SCTO | 0.1YCCTO-SCTO | 0.5YCCTO-SCTO | 0.9YCCTO-SCTO |
---|---|---|---|---|
Eb (kV cm-1) | 25.34 | 32.36 | 35.82 | 22.42 |
α | 7.28 | 8.09 | 14.65 | 8.33 |
Ugb (V) | 8.82 | 20.68 | 24.42 | 15.86 |
Fig. 6. Comparison of breakdown field (a), nonlinear coefficient (b), grain boundary resistivity (c) and its activation energy (d) of the composite samples to that of CCTO ceramics. (The numbers of 0-4 refer to CCTO, CCTO-SCTO, 0.1YCCTO-SCO, 0.5YCCTO-SCTO and 0.9YCTO-SCTO, respectively.).
Samples | ϕ0 (eV) | Nd (1024 m-3) | Qi0/e (1017 m-2) | w (nm) |
---|---|---|---|---|
CCTO-SCTO | 0.94 | 8.39 | 5.29 | 31.53 |
0.1YCCTO-SCTO | 0.96 | 10.79 | 6.05 | 28.03 |
0.5YCCTO-SCTO | 0.98 | 6.20 | 4.65 | 37.51 |
0.9YCCTO-SCTO | 1.01 | 24.23 | 9.32 | 19.23 |
Table 4. Donor density Nd, interface density Ns, Schottky barrier height under zero voltage ϕ0 and depletion layer width of the YCCTO-SCTO composite ceramics.
Samples | ϕ0 (eV) | Nd (1024 m-3) | Qi0/e (1017 m-2) | w (nm) |
---|---|---|---|---|
CCTO-SCTO | 0.94 | 8.39 | 5.29 | 31.53 |
0.1YCCTO-SCTO | 0.96 | 10.79 | 6.05 | 28.03 |
0.5YCCTO-SCTO | 0.98 | 6.20 | 4.65 | 37.51 |
0.9YCCTO-SCTO | 1.01 | 24.23 | 9.32 | 19.23 |
Fig. 9. Schematic of double Schottky barrier (a) and voltage dependence of barrier height and interfacial charge density of the composite ceramics (b). Schematic diagram of forming board and deep interface states in CCTO based composites (c) and calculated distribution of interface states of the composite samples (d).
[1] | Y. Wang, W. Jie, C. Yang, X. Wei, J. Hao, Adv. Funct. Mater. 29 (2019) 1808118. |
[2] |
F. Yan, Y. Shi, X. Zhou, K. Zhu, B. Shen, J. Zhai, Chem. Eng. J. 417 (2020) 127945.
DOI URL |
[3] |
L. Zhang, Y. Pu, M. Chen, T. Wei, X. Peng, Chem. Eng. J. 383 (2020) 123154.
DOI URL |
[4] |
A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115 (2000) 217-220.
DOI URL |
[5] |
R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sin- clair, J. Eur. Ceram. Soc. 32 (2012) 3313-3323.
DOI URL |
[6] |
M.A. Subramanian, A.W. Sleight, Solid State Sci. 4 (2002) 347-351.
DOI URL |
[7] | M. Ahmadipour, M.F. Ain, Z.A. Ahmad, Nano Micro Lett. 8 (2016) 291-311. |
[8] |
N.T. Taylor, F.H. Davies, S.G. Davies, C.J. Price, S.P. Hepplestone, Adv. Mater. 31 (2019) 1904746.
DOI URL |
[9] |
S.Y. Chung, I.D. Kim, S.J. Kang, Nat. Mater. 3 (2004) 774-778.
DOI URL |
[10] |
M.A. Ramírez, P.R. Bueno, J.A. Varela, E. Longo, Appl. Phys. Lett. 89 (2006) 212102.
DOI URL |
[11] |
M. Maleki Shahraki, S. Alipour, P. Mahmoudi, A. Karimi, Ceram. Int. 44 (2018) 20386-20390.
DOI URL |
[12] |
Z. Tang, K. Wu, J. Li, S. Huang, J. Eur. Ceram. Soc. 40 (2020) 3437-34 4 4.
DOI URL |
[13] |
Z. Peng, J. Li, P. Liang, Z. Yang, X. Chao, J. Eur. Ceram. Soc. 37 (2017) 4637-4644.
DOI URL |
[14] |
B. Cheng, Y. Lin, W. Deng, J. Cai, J. Lan, C. Nan, X. Xiao, J. He, J. Electroceram. 29 (2012) 250-253.
DOI URL |
[15] |
T. Li, Z. Chen, F. Chang, J. Hao, J. Zhang, J. Alloys Compd. 484 (2009) 718-722.
DOI URL |
[16] |
L. Liu, L. Fang, Y. Huang, Y. Li, D. Shi, S. Zheng, S. Wu, C. Hu, J. Appl. Phys. 110 (2011) 094101.
DOI URL |
[17] |
J. Yuan, Y. Lin, H. Lu, B. Cheng, C. Nan, J. Am. Ceram. Soc. 94 (2011) 1966-1969.
DOI URL |
[18] |
T. Li, Y. Sun, H.Y. Dai, D.W. Liu, J. Chen, R.Z. Xue, Z.Q. Chen, J. Alloys Compd. 829 (2020) 154595.
DOI URL |
[19] |
L. Liu, H. Fan, P. Fang, X. Chen, Mater. Res. Bull. 43 (2008) 1800-1807.
DOI URL |
[20] |
P. Mao, J. Wang, L. Zhang, S. Liu, Y. Zhao, Q. Sun, J. Mater. Sci. Mater. Electron. 30 (2019) 13401-13411.
DOI URL |
[21] |
S. Pongpaiboonkul, T.M. Daniels, J.H. Hodak, A. Wisitsoraat, S.K. Hodak, Appl. Surf. Sci. 540 (2021) 148373.
DOI URL |
[22] |
E.C. Grzebielucka, J.F.H. Leandro Monteiro, E.C.F. de Souza, C.P. Ferreira Borges, A.V.C. de Andrade, E. Cordoncillo, H. Beltrán-Mir, S.R.M. Antunes, J. Mater. Sci. Technol. 41 (2020) 12-20.
DOI |
[23] |
L. Ren, L. Yang, C. Xu, X. Zhao, R. Liao, J. Alloys Compd. 768 (2018) 652-658.
DOI URL |
[24] |
Z. Tang, K. Wu, J. Li, S. Huang, Ceram. Int. 46 (2020) 16949-16955.
DOI URL |
[25] |
J. Boonlakhorn, N. Chanlek, P. Thongbai, P. Srepusharawoot, J. Phys. Chem. C 124 (2020) 20682-20692.
DOI URL |
[26] |
J. Li, K. Wu, R. Jia, L. Hou, L. Gao, S. Li, Mater. Des. 92 (2016) 546-551.
DOI URL |
[27] | P. Mao, J. Wang, L. He, L. Zhang, A. Annadi, F. Kang, Q. Sun, Z. Wang, H. Gong, ACS Appl. Mater. Interfaces 12 (2020) 4 8781-4 8793. |
[28] |
D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80 (2002) 2153-2155.
DOI URL |
[29] |
A. Cho, C.S. Han, M. Kang, W. Choi, J. Lee, J. Jeon, S. Yu, Y.S. Jung, Y.S. Cho, ACS Appl. Mater. Interfaces 10 (2018) 16203-16209.
DOI URL |
[30] |
K. Wu, Y. Wang, Z. Hou, S. Li, J. Li, Z. Tang, Y. Lin, J. Phys. D Appl. Phys. 54 (2021) 045301.
DOI URL |
[31] |
Z. Tang, Y. Huang, K. Wu, J. Li, J. Eur. Ceram. Soc. 38 (2018) 1569-1575.
DOI URL |
[32] |
J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, J. Mater. Sci. Mater. Electron. 26 (2015) 2329-2337.
DOI URL |
[33] |
L. Tang, F. Xue, P. Guo, Z. Xin, Z. Luo, W. Li, Ceram. Int. 44 (2018) 18535-18540.
DOI URL |
[34] |
D. Mori, M. Shimoi, Y. Kato, T. Katsumata, K. Hiraki, T. Takahashi, Y. Inaguma, Ferroelectrics 414 (2011) 180-189.
DOI URL |
[35] |
K. Wu, Y. Huang, J. Li, S. Li, Appl. Phys. Lett. 111 (2017) 042902.
DOI URL |
[36] |
Y. Huang, K. Wu, Z. Xing, C. Zhang, X. Hu, P. Guo, J. Zhang, J. Li, J. Appl. Phys. 125 (2019) 084103.
DOI URL |
[37] | K. Wu, Y. Huang, L. Hou, Z. Tang, J. Li, S. Li, J. Mater. Sci. Mater. Electron. 29 (2018) 4 488-4 494. |
[38] |
P. Mao, J. Wang, S. Liu, L. Zhang, Y. Zhao, K. Wu, Z. Wang, J. Li, Ceram. Int. 45 (2019) 15082-15090.
DOI |
[39] |
J. Wang, Z. Lu, T. Deng, C. Zhong, Z. Chen, J. Eur. Ceram. Soc. 38 (2018) 3505-3511.
DOI URL |
[40] |
P. Saengvong, J. Boonlakhorn, N. Chanlek, B. Putasaeng, P. Thongbai, Ceram. Int. 46 (2020) 9780-9785.
DOI URL |
[41] |
J. Jumpatam, B. Putasaeng, N. Chanlek, J. Boonlakhorn, P. Thongbai, N. Phromviyo, P. Chindaprasirt, Mater. Res. Bull. 133 (2021) 111043.
DOI URL |
[42] |
R. Jia, X. Zhao, J. Li, X. Tang, Mater. Sci. Eng B 185 (2014) 79-85.
DOI URL |
[43] | A.A. Felix, L.A. Saska, V.D.N. Bezzon, M. Cilense, Cilense, Ceram. Int 45 (2019) 14305-14311. |
[44] |
K. Prompa, E. Swatsitang, C. Saiyasombat, T. Putjuso, Ceram. Int. 44 (2018) 13267-13277.
DOI URL |
[45] |
J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, J. Eur. Ceram. Soc. 34 (2014) 2941-2950.
DOI URL |
[46] |
P. Thongbai, J. Boonlakhorn, B. Putasaeng, T. Yamwong, S. Maensiri, J. Am. Ceram. Soc. 96 (2013) 379-381.
DOI URL |
[47] |
G. Blatter, F. Greuter, Phys. Rev. B 33 (1986) 3952-3966.
PMID |
[1] | Zhongwu Liu, Jiayi He, Qing Zhou, Youlin Huang, Qingzheng Jiang. Development of non-rare earth grain boundary modification techniques for Nd-Fe-B permanent magnets [J]. J. Mater. Sci. Technol., 2022, 98(0): 51-61. |
[2] | Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2022, 98(0): 72-86. |
[3] | Laishan Yang, Zhibo Dong, Lei Wang, Nikolas Provatas. Improved multi-order parameter and multi-component model of polycrystalline solidification [J]. J. Mater. Sci. Technol., 2022, 101(0): 217-225. |
[4] | Fu-Zhi Dai, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths [J]. J. Mater. Sci. Technol., 2022, 101(0): 234-241. |
[5] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[6] | Jun Cao, Tianli Zhang, Jinghua Liu, Hao Xu, Mingyao Hu, Wei Xia, Ao Wang, Hui Wang, Chengbao Jiang. Grain boundary optimization induced substantial squareness enhancement and high performance in iron-rich Sm-Co-Fe-Cu-Zr magnets [J]. J. Mater. Sci. Technol., 2021, 85(0): 56-61. |
[7] | Chaoqun Dang, Weitong Lin, Fanling Meng, Hongti Zhang, Sufeng Fan, Xiaocui Li, Ke Cao, Haokun Yang, Wenzhao Zhou, Zhengjie Fan, Ji-jung Kai, Yang Lu. Enhanced tensile ductility of tungsten microwires via high-density dislocations and reduced grain boundaries [J]. J. Mater. Sci. Technol., 2021, 95(0): 193-202. |
[8] | Yuanyuan Qiao, Xiaoying Liu, Ning Zhao, Lawrence C M Wu, Chunying Liu, Haitao Ma. Morphology and orientation evolution of Cu6Sn5 grains on (001)Cu and (011)Cu single crystal substrates under temperature gradient [J]. J. Mater. Sci. Technol., 2021, 95(0): 29-39. |
[9] | Huabao Yang, Liang Wu, Bin Jiang, Wenjun Liu, Jiangfeng Song, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62(0): 128-138. |
[10] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[11] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[12] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Xiangdong Zha, Yingche Ma, Kui Liu. Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging [J]. J. Mater. Sci. Technol., 2021, 73(0): 108-115. |
[13] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[14] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[15] | Yingbin Chen, Qishan Huang, Qi Zhu, Kexing Song, Yanjun Zhou, Haofei Zhou, Jiangwei Wang. Coordinated grain boundary deformation governed nanograin annihilation in shear cycling [J]. J. Mater. Sci. Technol., 2021, 86(0): 180-191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||