J. Mater. Sci. Technol. ›› 2022, Vol. 108: 164-172.DOI: 10.1016/j.jmst.2021.08.056
• Research Article • Previous Articles Next Articles
Zhong Zhenga, Xuexi Zhanga,*(), Mingfang Qiana, Jianchao Lia, Muhammad Imranb, Lin Genga,*(
)
Received:
2021-05-30
Revised:
2021-07-14
Accepted:
2021-08-16
Published:
2021-10-27
Online:
2021-10-27
Contact:
Xuexi Zhang,Lin Geng
About author:
genglin@hit.edu.cn (L. Geng).Zhong Zheng, Xuexi Zhang, Mingfang Qian, Jianchao Li, Muhammad Imran, Lin Geng. Ultra-high strength GNP/2024Al composite via thermomechanical treatment[J]. J. Mater. Sci. Technol., 2022, 108: 164-172.
Fig. 1. Schematic diagram showing fabrication procedure of 5.0 vol.% GNP/2024Al composites by spark plasma sinter (SPS) and thermomechanical treatment (TMT).
Processing conditions | 2024Al | GNP/2024Al |
---|---|---|
Extrusion | ED-2024Al | ED-GNP/2024Al |
Extrusion+ 495 °C/60 min+Water cooling | ED+Q-2024Al | ED+Q-GNP/2024Al |
Extrusion+ 495 °C/60 min+Water cooling+ Six-pass drawing | ED+Q+DN6p-2024Al | ED+Q+DN6p-GNP/2024Al |
Extrusion+ 495 °C/60 min+Water cooling+ Six-pass drawing+ Ageing | ED+Q+DN6p+A-2024Al | ED+Q+DN6p+A-GNP/2024Al |
Table 1. Summary of the nomenclature of 2024Al alloys and 5.0 vol.% GNP/2024Al composites under different preparation conditions.
Processing conditions | 2024Al | GNP/2024Al |
---|---|---|
Extrusion | ED-2024Al | ED-GNP/2024Al |
Extrusion+ 495 °C/60 min+Water cooling | ED+Q-2024Al | ED+Q-GNP/2024Al |
Extrusion+ 495 °C/60 min+Water cooling+ Six-pass drawing | ED+Q+DN6p-2024Al | ED+Q+DN6p-GNP/2024Al |
Extrusion+ 495 °C/60 min+Water cooling+ Six-pass drawing+ Ageing | ED+Q+DN6p+A-2024Al | ED+Q+DN6p+A-GNP/2024Al |
Fig. 2. (a) SEM image of the as-sintered 5.0 vol.% GNP/2024Al composites; (b)-(e) EDS mapping of Al, C, Cu and Mg elements of (a); (f) statistical size of GNP aggregates.
Fig. 3. XRD pattern of solid solution-treated and untreated extruded 5.0 vol.% GNP/2024Al composites. The insets show the distribution of precipitates in un-solution treated and solid solution-treated extruded composites.
Fig. 4. SEM images showing GNPs morphology (a) and size of GNP aggregates (b) in 5.0 vol.% GNP/2024Al composites processed by ED+Q+DN6p (extrusion + solid solution + six-pass drawing). The Drawing Direction (DD) is marked in (a).
Fig. 5. Morphology and thickness of GNPs in 5.0 vol.% GNP/2024Al composites processed by ED+Q+DN6p (extrusion + solid solution + six-pass drawing). (a) TEM micrograph showing distribution of dispersed GNPs; (b) Statistical thickness of GNPs. The inset in (a) is a HRTEM image showing an exfoliated GNP.
Fig. 7. TEM images showing interactions between GNPs and precipitates in ED+Q+DN6p+A3h composites (ED+Q+DN6p followed by ageing at 463 K for 3 h). (a) TEM bright field image showing formation of precipitates on GNPs; (b) HAADF-STEM image; (c) Scanning TEM image for all elements; (d)-(i) Scanning TEM images for C, Al, Cu, Mg, Si and Mn elements.
Fig. 8. Microstructures of 5.0 vol.% GNP/2024Al composites processed by (a) ED+Q (extrusion + solid solution), (b) ED+Q+DN6p (extrusion + solid solution + six-pass drawing), (c) ED+Q+DN6p+A9h (extrusion + solid solution + six-pass drawing + peak ageing at 463 K for 9 h), (d) high magnification image of lath-shaped precipitates. Insets in (a) and (b) are selected area electron diffraction (SAED) patterns, and the inset in (d) is the FFT pattern.
Fig. 9. Formation schemes of precipitates in GNP/Al composites processed by (a) ED+Q (extrusion + solid solution), (b) ED+Q+DN6p (extrusion + solid solution + six-pass drawing) and (c) ED+Q+DN6p+A (extrusion + solid solution + six-pass drawing + ageing).
Fig. 10. Tensile curves of 2024Al alloys and 5.0 vol.% GNP/2024Al composites. The alloys and composites are processed by extrusion (ED-2024Al and ED-GNP/2024Al) and extrusion + solid solution + six-pass drawing + peak ageing (ED+Q+DN6p+A12h-2024Al and ED+Q+DN6p+A9h-GNP/2024Al).
Sample | E (GPa) | YS (MPa) | UTS (MPa) | δ (%) |
---|---|---|---|---|
ED-2024Al | 83 ± 1.0 | 190 ± 5 | 326 ± 4 | 12.1 ± 2 |
ED-GNP/2024Al | 87 ± 1.5 | 313 ± 6 | 405 ± 5 | 5.1 ± 1.5 |
ED+Q+DN6p+A12h-2024Al | 85 ± 2.0 | 303 ± 4 | 397 ± 5 | 4.5 ± 0.9 |
ED+Q+DN6p+A9h-GNP/2024Al | 99 ± 1.0 | 482 ± 3 | 571 ± 5 | 4.6 ± 0.4 |
Table 2. Elastic modulus (E), yield strength (YS), ultimate tensile strength (UTS) and fracture elongation (δ) of 2024Al alloys and 5.0 vol.% GNP/2024Al composites after extrusion (ED) and extrusion + solid solution + six-pass drawing + peak ageing (ED+Q+DN6p+A12h-2024Al and ED+Q+DN6p+A9h-GNP/2024Al).
Sample | E (GPa) | YS (MPa) | UTS (MPa) | δ (%) |
---|---|---|---|---|
ED-2024Al | 83 ± 1.0 | 190 ± 5 | 326 ± 4 | 12.1 ± 2 |
ED-GNP/2024Al | 87 ± 1.5 | 313 ± 6 | 405 ± 5 | 5.1 ± 1.5 |
ED+Q+DN6p+A12h-2024Al | 85 ± 2.0 | 303 ± 4 | 397 ± 5 | 4.5 ± 0.9 |
ED+Q+DN6p+A9h-GNP/2024Al | 99 ± 1.0 | 482 ± 3 | 571 ± 5 | 4.6 ± 0.4 |
Fig. 11. TEM images showing microstructure evolution under in-situ TEM tensile test process for 5.0 vol.% GNP/2024Al composites underwent extrusion + solid solution + six-pass drawing + peak ageing (ED+Q+DN6p+A9h). The images were recorded at the same position at various straining stages: (a) and (b) 20 steps; (c) and (d) 40 steps; (e) and (f) 50 steps; (g) and (h) 60 steps. (b), (d), (f) and (h) are high magnification micrographs of (a), (c), (e) and (g), respectively.
Fig. 12. Comparison of strength-ductility of different content graphene reinforced Al composites produced by various techniques. Hot pressing details include ball milling + spark plasma sintering (SPS) [40,53] and hot pressing [51], molecular level mixing (MLM) [35] and flake powder assembly [43] + SPS, wet mixing + vacuum hot pressing [46] and SPS [50], stir die casting [41] + electrostatic self-assembly [54] + hot pressing. The extrusion details include ball milling + SPS [39] and hot pressing [57] + hot extrusion, ball milling + cold pressing + hot extrusion [13,44,45] + annealing [55], flake powder assembly + pressing + hot extrusion + T4 (500 °C for 1 h + ageing 96 h) [34], ball milling + pressure infiltration + hot extrusion [9,47,49], wet mixing + heat isostatic pressure + hot extrusion + solid solution (495 °C for 0.5 h + water quenching) [37], wet mixing [59] and flake powder assembly [60] + cold pressing + hot extrusion, shift-speed ball milling + vacuum hot pressing + hot extrusion [42,48]. The rolling details include flake powder assembly + SPS [4] and hot pressing [8,52,56] + rolling, ball milling + rolling [11,12]. The cold drawing processes include ball milling + cold pressing + hot extrusion + cold drawing (CD) [38]. The flake powder thixoforming (FPT) process includes flake assembly + hot pressing + thixoforming [10]. The friction stir processing (FSP) process includes wet mixing + hot pressing + multiple friction stir process [36]. The high-pressure torsion (HPT) process includes ball milling + cold pressing + high pressure torsion processing [58].
Composite ingredients | Refs. | Composite ingredients | Refs. |
---|---|---|---|
0.40 vol.% graphene b/pure Al | [ | 1.0 vol.% graphene a/pure Al | [ |
0.67 vol.% graphene b/Al-Cu alloy | [ | 0.5 vol.% graphene b/Al-Cu alloy | [ |
0.40 vol.% graphene a/pure Al | [ | 1.3 vol.% graphene a/2009Al alloy | [ |
1.3 vol.% graphene c/pure Al | [ | 0.7 vol.% graphene a/pure Al | [ |
0.5 vol.% graphene d/2024Al alloy | [ | 1.3 vol.% graphene a/pure Al | [ |
0.67 vol.% graphene e/pure Al | [ | 2.0 vol.% graphene b/pure Al | [ |
0.7 vol.% graphene d/pure Al | [ | 1.0 vol.% Cu-graphene a/pure Al | [ |
3.0 vol.% graphene e/pure Al | [ | 1.0 vol.% graphene a/pure Al | [ |
1.3 vol.% graphene a/pure Al | [ | 1.3 vol.% Cu-graphene a/pure Al | [ |
0.67 vol.% graphene d/pure Al | [ | 0.5 vol.% graphene e/2024Al alloy | [ |
0.67 vol.% graphene e/pure Al | [ | 0.3 vol.% graphene a/pure Al | [ |
6.7 vol.% graphene a/pure Al | [ | 1.0 vol.% graphene e/Al-Si alloy | [ |
1.3 vol.% graphene b/pure Al | [ | 0.3 vol.% graphene b/Al-Cu alloy | [ |
0.2 vol.% graphene e/ pure Al | [ | 0.67 vol.% graphene a/pure Al | [ |
1.3 vol.% graphene c/pure Al | [ | 0.78 vol.% graphene a/6061Al alloy | [ |
0.5 vol.% graphene b/pure Al | [ | 0.5 vol.% graphene b/pure Al | [ |
2.0 vol.% graphene a/5083 Al alloy | [ | 1.3 vol.% graphene e/Al-Cu alloy | [ |
Table 3. Composition of graphene reinforced aluminum composites produced by various techniques.
Composite ingredients | Refs. | Composite ingredients | Refs. |
---|---|---|---|
0.40 vol.% graphene b/pure Al | [ | 1.0 vol.% graphene a/pure Al | [ |
0.67 vol.% graphene b/Al-Cu alloy | [ | 0.5 vol.% graphene b/Al-Cu alloy | [ |
0.40 vol.% graphene a/pure Al | [ | 1.3 vol.% graphene a/2009Al alloy | [ |
1.3 vol.% graphene c/pure Al | [ | 0.7 vol.% graphene a/pure Al | [ |
0.5 vol.% graphene d/2024Al alloy | [ | 1.3 vol.% graphene a/pure Al | [ |
0.67 vol.% graphene e/pure Al | [ | 2.0 vol.% graphene b/pure Al | [ |
0.7 vol.% graphene d/pure Al | [ | 1.0 vol.% Cu-graphene a/pure Al | [ |
3.0 vol.% graphene e/pure Al | [ | 1.0 vol.% graphene a/pure Al | [ |
1.3 vol.% graphene a/pure Al | [ | 1.3 vol.% Cu-graphene a/pure Al | [ |
0.67 vol.% graphene d/pure Al | [ | 0.5 vol.% graphene e/2024Al alloy | [ |
0.67 vol.% graphene e/pure Al | [ | 0.3 vol.% graphene a/pure Al | [ |
6.7 vol.% graphene a/pure Al | [ | 1.0 vol.% graphene e/Al-Si alloy | [ |
1.3 vol.% graphene b/pure Al | [ | 0.3 vol.% graphene b/Al-Cu alloy | [ |
0.2 vol.% graphene e/ pure Al | [ | 0.67 vol.% graphene a/pure Al | [ |
1.3 vol.% graphene c/pure Al | [ | 0.78 vol.% graphene a/6061Al alloy | [ |
0.5 vol.% graphene b/pure Al | [ | 0.5 vol.% graphene b/pure Al | [ |
2.0 vol.% graphene a/5083 Al alloy | [ | 1.3 vol.% graphene e/Al-Cu alloy | [ |
[1] |
H. Zare, M. Jahedi, M.R. Toroghinejad, M. Meratian, M. Knezevic, Mater. Des. 106 (2016) 112-119.
DOI URL |
[2] |
H. Zare, M. Jahedi, M.R. Toroghinejad, M. Meratian, M. Knezevic, Mater. Sci. Eng. A 670 (2016) 205-216.
DOI URL |
[3] | X.X. Zhang, Z. Zheng, Y. Gao, L. Geng, Acta Metall. Sin. 55 (2019) 109-125. |
[4] |
A. Bhadauria, L.K. Singh, S.K. Nayak, T. Laha, Mater. Charact. 168 (2020) 110568.
DOI URL |
[5] |
Y.F. Han, Y.B. Ke, Y. Shi, Y. Liu, G.T. Yang, Z.Q. Li, D.B. Xiong, J. Zou, Q. Guo, Mater. Sci. Eng. A 787 (2020) 139541.
DOI URL |
[6] |
A. Sharma, V.M. Sharma, J. Paul, J. Compos. Mater. 54 (2020) 45-60.
DOI URL |
[7] | J.C. Li, X.X. Zhang, L. Geng, Compos. Part A 121 (2019) 4 87-4 98. |
[8] |
Z. Li, Q. Guo, Z.Q. Li, G.L. Fan, D.B. Xiong, Y.S. Su, J. Zhang, D. Zhang, Nano Lett. 15 (2015) 8077-8083.
DOI URL |
[9] |
P.Z. Shao, G.Q. Chen, B.Y. Ju, W.S. Yang, Q. Zhang, Z.J. Wang, X. Tan, Y.Y. Pei, S.J. Zhong, M. Hussain, G.H. Wu, Carbon 162 (2020) 455-464.
DOI URL |
[10] |
P.B. Li, L.Y. Chen, B. Cao, K. Shi, J. Alloy. Compd. 823 (2020) 153815.
DOI URL |
[11] |
S.E. Shin, D.H. Bae, Compos. Part A 78 (2015) 42-47.
DOI URL |
[12] |
S.E. Shin, H.J. Choi, J.H. Shin, D.H. Bae, Carbon 82 (2015) 143-151.
DOI URL |
[13] |
T.L. Han, J.J. Li, N.Q. Zhao, C.N. He, Carbon 159 (2020) 311-323.
DOI URL |
[14] |
C.J. Hu, H.G. Yan, J.H. Chen, B. Su, Trans. Nonferrous. Met. Soc 26 (2016) 1259-1268.
DOI URL |
[15] |
T.L. Han, F.C. Wang, J.J. Li, C.N. He, N.Q. Zhao, J. Mater. Sci. Technol. 92 (2021) 1-10.
DOI URL |
[16] | D.H. Nam, Y.K. Kim, S.I. Cha, S.H. Hong, Carbon 50 (2012) 4 809-4 814. |
[17] |
J. Sheng, L.D. Wang, Y. Zhao, S.C. Xu, X.L. Liu, W.D. Fei, J. Alloy. Compd. 701 (2017) 716-721.
DOI URL |
[18] |
E.D. Russo, M. Conserva, M. Buratti, F. Gatto, Mater. Sci. Eng. A 14 (1974) 23-36.
DOI URL |
[19] |
R.E. Sanders, E.A. Starke, Metall. Trans. A 9 (1978) 1087-1100.
DOI URL |
[20] | J. Waldma, H. Sulinski, H. Markus, Metall. Trans. 3 (1974) 573-584. |
[21] | N.E. Paton, C.H. Hamilton, J.A. Wert, M.W. Mahoney, J. Metal. 34 (1982) 21-27. |
[22] |
Z.M. ElBaradie, M. ElSayed, J. Mater. Process. Technol. 62 (1996) 76-80.
DOI URL |
[23] |
E.H. Chia, E.A. Starke, Metal. Trans. A 8 (1977) 825-832.
DOI URL |
[24] |
Z.Y. Zhang, R. Yang, G. Chen, Q. Zhu, Y.T. Zhao, F. Chen, C.L. Wang, Mater. Sci. Eng. A 761 (2019) 138041.
DOI URL |
[25] |
J.M. Li, J. Liu, L. Wang, Z. Chen, Q.W. Shi, C.Y. Dan, Y. Wu, S.Y. Zhong, H.W. Wang, Mater. Charact. 162 (2020) 110196.
DOI URL |
[26] |
Z. Zheng, S. Zhong, X.X. Zhang, J.C. Li, L. Geng, Mater. Sci. Eng. A 798 (2020) 140234.
DOI URL |
[27] |
Z. Zheng, X.X. Zhang, J.C. Li, L. Geng, Sci. China Technol. Sci. 63 (2020) 1426-1435.
DOI URL |
[28] |
Z. Zheng, X.X. Zhang, J.C. Li, L. Geng, Mater. Des. 193 (2020) 108796.
DOI URL |
[29] |
L. Jiang, Z.Q. Li, G.L. Fan, L.L. Cao, D. Zhang, Carbon 50 (2012) 1993-1998.
DOI URL |
[30] |
T.R. Hong, X.F. Li, H.W. Wang, D. Chen, K. Wang, Mater. Sci. Eng. A 624 (2015) 110-117.
DOI URL |
[31] |
C.Y. Wang, Y.S. Su, Q.B. Ouyang, D. Zhang, Vacuum 188 (2021) 110150.
DOI URL |
[32] |
V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Nat. Mater. 1 (2002) 45-48.
DOI URL |
[33] |
B. Chen, K. Kondoh, J.S. Li, Mater. Lett. 264 (2020) 127323.
DOI URL |
[34] |
Z.Y. Liu, L.H. Wang, Y.N. Zan, W.G. Wang, B.L. Xiao, D. Wang, Q.Z. Wang, D.R. Ni, Z.Y. Ma, Compos. Part B Eng. 199 (2020) 108268.
DOI URL |
[35] |
M. Khoshghadam-Pireyousefan, R. Rahmanifard, L. Orovcik, P. Švec, V. Klemm, Mater. Sci. Eng. A 772 (2020) 138820.
DOI URL |
[36] |
Z.W. Zhang, Z.Y. Liu, B.L. Xiao, D.R. Ni, Z.Y. Ma, Carbon 135 (2018) 215-223.
DOI URL |
[37] | S.J. Yan, S.L. Dai, X.Y. Zhang, C. Yang, Q.H. Hong, J.Z. Chen, Z.M. Lin, Mater. Sci. Eng. A 612 (2014) 4 40-4 4 4. |
[38] |
J.C. Li, X.X. Zhang, L. Geng, Mater. Des. 144 (2018) 159-168.
DOI URL |
[39] |
M. Li, Z. Zhang, H.Y. Gao, Y.F. Wang, J.M. Liang, D. Shu, J. Wang, B.D. Sun, Mater. Charact. 159 (2020) 110018.
DOI URL |
[40] |
B.W. Xiong, K. Liu, W. Xiong, X. Wu, J.Y. Sun, J. Alloy. Compd. 845 (2020) 156282.
DOI URL |
[41] | H. Singh, S. Kumar, D. Kumar, M. Srivastav, R. Kumar, J. Jain, A. Chouhan, O.P. Khatri, Adv. Eng. Mater. (2020) 20 0 0910. |
[42] |
Y.Y. Jiang, Z.Q. Tan, G.L. Fan, L. Wang, D.B. Xiong, Q. Guo, Y.S. Su, Z.Q. Li, D. Zhang, Carbon 158 (2020) 449-455.
DOI URL |
[43] |
L.K. Singh, A. Bhadauria, T. Laha, Powder Technol. 356 (2019) 1059-1076.
DOI URL |
[44] |
R. Guan, Y. Wang, S. Zheng, N. Su, Z. Ji, Z. Liu, Y. An, B. Chen, Mater. Sci. Eng. A 754 (2019) 437-446.
DOI URL |
[45] |
J. Wang, X. Zhang, N.Q. Zhao, C.N. He, J. Mater. Sci. 54 (2019) 5498-5512.
DOI |
[46] |
X.H. Liu, J.J. Li, J.W. Sha, E.Z. Liu, Q.Y. Li, C.N. He, C.S. Shi, N.Q. Zhao, Mater. Sci. Eng. A 709 (2018) 65-71.
DOI URL |
[47] |
W.S. Yang, Q.Q. Zhao, L. Xin, J. Qiao, J.Y. Zou, P.Z. Shao, Z.H. Yu, Q. Zhang, G.H. Wu, J. Alloy. Compd. 732 (2018) 748-758.
DOI URL |
[48] |
Y.Y. Jiang, Z.Q. Tan, R. Xu, G.L. Fan, D.B. Xiong, Q. Guo, Y.S. Su, Z.Q. Li, D. Zhang, Compos. Part A 111 (2018) 73-82.
DOI URL |
[49] |
P.Z. Shao, W.S. Yang, Q. Zhang, Q.Y. Meng, X. Tan, Z.Y. Xiu, J. Qiao, Z.H. Yu, G.H. Wu, Compos. Part A 109 (2018) 151-162.
DOI URL |
[50] |
A. Bisht, M. Srivastava, R.M. Kumar, I. Lahiri, D. Lahiri, Mater. Sci. Eng. A 695 (2017) 20-28.
DOI URL |
[51] |
G. Li, B.W. Xiong, J. Alloy. Compd. 697 (2017) 31-36.
DOI URL |
[52] |
M. Zhao, D.B. Xiong, Z.Q. Tan, G.L. Fan, Q. Guo, C.P. Guo, Z.Q. Li, D. Zhang, Scripta Mater. 139 (2017) 44-48.
DOI URL |
[53] |
S.Z. Zhao, S.J. Yan, X. Chen, S.L. Dai, IOP Conf. Ser Mater. Sci. Eng. 281 (2017) 12017.
DOI URL |
[54] |
X. Gao, H.Y. Yue, E.J. Guo, H. Zhang, X.Y. Lin, L.H. Yao, B. Wang, Mater. Des. 94 (2016) 54-60.
DOI URL |
[55] |
J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X. Y. Zhang, S.L. Dai, Mater. Sci. Eng. A 626 (2015) 400-405.
DOI URL |
[56] |
Z. Li, G.L. Fan, Q. Guo, Z.Q. Li, Y.S. Su, D. Zhang, Carbon 95 (2015) 419-427.
DOI URL |
[57] |
M. Rashad, F.S. Pan, Z.W. Yu, M. Asif, H. Lin, R.J. Pan, Prog. Nat. Sci. Mater. Int. 25 (2015) 460-470.
DOI URL |
[58] |
L.Y. Zhao, H.M. Lu, Z.J. Gao, Adv. Eng. Mater. 17 (2015) 976-981.
DOI URL |
[59] |
M. Rashad, F.S. Pan, A.T. Tang, M. Asif, Prog. Nat. Sci Mater. Int. 24 (2014) 101-108.
DOI URL |
[60] |
J.Y. Wang, Z.Q. Li, G.L. Fan, H.H. Pan, Z.X. Chen, D. Zhang, Scripta Mater. 66 (2012) 594-597.
DOI URL |
[61] |
B.W. Xiong, K. Liu, Q.S. Yan, W. Xiong, X. Wu, J. Alloy. Compd. 837 (2020) 155495.
DOI URL |
[62] |
F.H. Latief, E.M. Sherif, J. Ind. Eng. Chem. 18 (2012) 2129-2134.
DOI URL |
[1] | Zhuang Tang, Kai Ning, Zhiyao Fu, Ze Lian, Kangning Wu, Shoudao Huang. Significantly enhanced varistor properties of CaCu3Ti4O12 based ceramics by designing superior grain boundary: Deepening and broadening interface states [J]. J. Mater. Sci. Technol., 2022, 108(0): 82-89. |
[2] | Y.T. Zhou, X.H. Shao, S.J. Zheng, X.L. Ma. Structure evolution of the Fe3C/Fe interface mediated by cementite decomposition in cold-deformed pearlitic steel wires [J]. J. Mater. Sci. Technol., 2022, 101(0): 28-36. |
[3] | Chong Peng, Hu Tang, Changjian Geng, Pengjie Liang, Biao Wan, Yujiao Ke, Yuefeng Wang, Peng Jia, Wenfeng Peng, Lina Qiao, Kenan Li, Xiaohong Yuan, Yucheng Zhao, Mingzhi Wang. Extraordinary toughening enhancement in nonstoichiometric vanadium carbide [J]. J. Mater. Sci. Technol., 2022, 97(0): 176-181. |
[4] | Sen Yu, Zhe Yu, Dagang Guo, Hui Zhu, Minghua Zhang, Jianye Han, Zhentao Yu, Yemin Cao, Gui Wang. Enhanced bioactivity and interfacial bonding strength of Ti3Zr2Sn3Mo25Nb alloy through graded porosity and surface bioactivation [J]. J. Mater. Sci. Technol., 2022, 100(0): 137-149. |
[5] | Xiaoyang Yi, Bin Sun, Kuishan Sun, Haizhen Wang, Shangzhou Zhang, Zhiyong Gao, Xianglong Meng. Revealing the interface structure of {111} type I twin in Ti-Ni-Hf shape memory alloy composite [J]. J. Mater. Sci. Technol., 2022, 105(0): 237-241. |
[6] | Zheng Zhang, Wenming Jiang, Guangyu Li, Junlong Wang, Feng Guan, Guoliang Jie, Zitian Fan. Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting [J]. J. Mater. Sci. Technol., 2022, 105(0): 214-225. |
[7] | Guanshui Ma, Dong Zhang, Peng Guo, Hao Li, Yang Xin, Zhenyu Wang, Aiying Wang. Phase orientation improved the corrosion resistance and conductivity of Cr2AlC coatings for metal bipolar plates [J]. J. Mater. Sci. Technol., 2022, 105(0): 36-44. |
[8] | Yanyu Song, Duo Liu, Guobiao Jin, Haitao Zhu, Naibin Chen, Shengpeng Hu, Xiaoguo Song, Jian Cao. Fabrication of Si3N4/Cu direct-bonded heterogeneous interface assisted by laser irradiation [J]. J. Mater. Sci. Technol., 2022, 99(0): 169-177. |
[9] | Z.Q. Chen, M.C. Li, J.S. Cao, F.C. Li, S.W. Guo, B.A. Sun, H.B. Ke, W.H. Wang. Interface dominated deformation transition from inhomogeneous to apparent homogeneous mode in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2022, 99(0): 178-183. |
[10] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
[11] | Peihao Geng, Ninshu Ma, Hong Ma, Yunwu Ma, Kazuki Murakami, Huihong Liu, Yasuhiro Aoki, Hidetoshi Fujii. Flat friction spot joining of aluminum alloy to carbon fiber reinforced polymer sheets: Experiment and simulation [J]. J. Mater. Sci. Technol., 2022, 107(0): 266-289. |
[12] | Hong-Lei Chen, Xue-Mei Luo, Dong Wang, Peter Schaaf, Guang-Ping Zhang. Achieving very high cycle fatigue performance of Au thin films for flexible electronic applications [J]. J. Mater. Sci. Technol., 2021, 89(0): 107-113. |
[13] | Gaoqi Tian, Songrui Wei, Zhangtao Guo, Shiwei Wu, Zhongli Chen, Fuming Xu, Yang Cao, Zheng Liu, Jieqiong Wang, Lei Ding, Jinchun Tu, Hao Zeng. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting [J]. J. Mater. Sci. Technol., 2021, 77(0): 108-116. |
[14] | Peixing Chen, Sixiang Wang, Zhi Huang, Yan Gao, Yu Zhang, Chunli Wang, Tingting Xia, Linhao Li, Wanqian Liu, Li Yang. Multi-functionalized nanofibers with reactive oxygen species scavenging capability and fibrocartilage inductivity for tendon-bone integration [J]. J. Mater. Sci. Technol., 2021, 70(0): 91-104. |
[15] | Lulu Li, Irene J. Beyerlein, Weizhong Han. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 61-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||