J. Mater. Sci. Technol. ›› 2022, Vol. 111: 57-65.DOI: 10.1016/j.jmst.2021.08.090
• Research Article • Previous Articles Next Articles
Likui Zhang1, Yao Chen1, Qian Liu, Wenting Deng, Yaoqun Yue, Fanbin Meng*(
)
Received:2021-07-31
Revised:2021-08-30
Accepted:2021-08-30
Published:2022-06-10
Online:2021-12-02
Contact:
Fanbin Meng
About author:* E-mail address: mengfanbin_wing@126.com (F. Meng).1These authors contributed equally to this work.
Likui Zhang, Yao Chen, Qian Liu, Wenting Deng, Yaoqun Yue, Fanbin Meng. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding[J]. J. Mater. Sci. Technol., 2022, 111: 57-65.
Fig. 2. (a) Optical pictures of aPAN and GO-aPAN-10 solutions after standing for 12 h. (b) Optical pictures of GO-aPAN-10 films. (c) FTIR spectra of GO and GO-aPAN films. (d) Raman spectra of GO and GO-aPAN films. (e) XRD spectra of GO and GO-aPAN films. (f) Stress-strain curves of GO film and GO-aPAN films with different aPAN nanofibers contents. The fracture morphology of GO and GO-aPAN films: (g) GO film, (h) GO-aPAN-5 film, (i) GO-aPAN-10 film.
Fig. 3. (a) XRD of GF and GCF samples. (b) Raman spectra of GF and GCF samples. SEM images of GF and GCFs: (c) GF, (d) GCF-5, (e) GCF-10, (f) GCF-15. (g) TEM image of GCF-10. (h) HRTEM image of the graphite laminate in GCF-10.
Fig. 4. Mechanical measurement of the films. (a) Stress-Strain curves of GF and GCF samples. (b) Stress-strain curves and (c) electrical conductivity of GCF-10 repeatedly fold 1000 times with a radius of <1 mm.
Fig. 5. (a) Electrical conductivity of GF and GCF samples. (b) EMI shielding performance of GF and GCF samples in 8-12 GHz frequency range. (c) Comparison of the average values of SET, SEA and SER of GF and GCF samples in the range of 8-12 GHz. (d) Effective absorption coefficient of GF and GCFs. (e) Shielding effectiveness of GF and GCFs. (f) EMI SE coefficient R, T, A of GCF-10.
| Name | Frequency range (GHz) | Thickness (mm) | Density (g/cm3) | Conductivity (S/m) | EMI SE (dB) | SSE/t(dB·cm2/g) | Ref. |
|---|---|---|---|---|---|---|---|
| Graphene aerogel film | 2-18 | 0.120 | 0.41 | 80,000 | 65-105 | 13,211-21,341 | [ |
| Graphene paper | 8-12 | 0.100 | 0.81 | 68,000 | 100 | 12,346 | [ |
| Graphene/CNTs film | 2-18 | 0.015 | 1.45 | 274,000 | 58-66 | 26,667-30,345 | [ |
| Graphene/CNTs paper | 8.2-12.4 | 0.0033 | 2.81 | 23,340 | 26 | 28,038 | [ |
| Porous graphene film | 8.2-12.4 | 0.2 | 0.048 | 1000 | 47.8 | 49,750 | [ |
| rGO film | 0.3-4.0 | 0.015 | - | 24,300 | 20.2 | - | [ |
| GCFs | 8-12 | 0.012 | 0.678 | 172,000 | 55-57 | 67,601-70,059 | This work |
Table 1. Comparison of typical carbon-based materials and corresponding shielding performance.
| Name | Frequency range (GHz) | Thickness (mm) | Density (g/cm3) | Conductivity (S/m) | EMI SE (dB) | SSE/t(dB·cm2/g) | Ref. |
|---|---|---|---|---|---|---|---|
| Graphene aerogel film | 2-18 | 0.120 | 0.41 | 80,000 | 65-105 | 13,211-21,341 | [ |
| Graphene paper | 8-12 | 0.100 | 0.81 | 68,000 | 100 | 12,346 | [ |
| Graphene/CNTs film | 2-18 | 0.015 | 1.45 | 274,000 | 58-66 | 26,667-30,345 | [ |
| Graphene/CNTs paper | 8.2-12.4 | 0.0033 | 2.81 | 23,340 | 26 | 28,038 | [ |
| Porous graphene film | 8.2-12.4 | 0.2 | 0.048 | 1000 | 47.8 | 49,750 | [ |
| rGO film | 0.3-4.0 | 0.015 | - | 24,300 | 20.2 | - | [ |
| GCFs | 8-12 | 0.012 | 0.678 | 172,000 | 55-57 | 67,601-70,059 | This work |
Fig. 6. CST simulation results of GCF-10 at 10 GHz. (a) Electromagnetic shielding simulation model of GCF-10. (b) Electric field intensity distribution. (c) Surface current density distribution. (d) Internal current density distribution. (e) Power loss density distribution on the surface. (f) Power loss density inside.
| [1] |
T. Wang, W.W. Kong, W.C. Yu, J.F. Gao, K. Dai, D.X. Yan, Z.M. Li, Nano micro Lett 13 (2021) 162.
DOI URL |
| [2] |
D.D. Zhi, T. Li, J.Z. Li, H.S. Ren, F.B. Meng, Compos. Part B Eng. 211 (2021) 108642.
DOI URL |
| [3] |
V.T. Nguyen, B.K. Min, Y. Yi, S.J. Kim, C.G. Choi, Chem. Eng. J. 393 (2020) 124608.
DOI URL |
| [4] |
T. Wang, W.C. Yu, C.G. Zhou, W.J. Sun, Y.P. Zhang, L.C. Jia, J.F. Gao, K. Dai, D.X. Yan, Z.M. Li, Compos. Part B Eng. 193 (2020) 108015.
DOI URL |
| [5] | L. Wang, X.T. Shi, J.L. Zhang, Y.L. Zhang, J.W. Gu, J. Mater. Sci.Technol. 52 (2020) 119-126. |
| [6] |
C.B. Liang, K.P. Ruan, Y.L. Zhang, J.W. Gu, ACS Appl. Mater. Interfaces 12 (2020) 18023-18031.
DOI URL |
| [7] |
Y.T. Xu, Y. Wang, C.G. Zhou, W.J. Sun, K. Dai, J.H. Tang, J. Lei, D.X. Yan, Z.M. Li, J. Mater. Chem. C 8 (2020) 11546-11554.
DOI URL |
| [8] |
P. Song, B. Liu, H. Qiu, X.T. Shi, D.P. Cao, J.W. Gu, Compos. Commun. 24 (2021) 100653.
DOI URL |
| [9] |
L.C. Jia, D.X. Yan, X.F. Liu, R.J. Ma, H.Y. Wu, Z.M. Li, ACS Appl. Mater. Interfaces 10 (2018) 11941-11949.
DOI URL |
| [10] |
F.B. Meng, H.G. Wang, F. Huang, Y.F. Guo, Z.Y. Wang, D. Hui, Z.W. Zhou, Compos. Part B Eng. 137 (2018) 260-277.
DOI URL |
| [11] |
M.S. Cao, X.X. Wang, W.Q. Cao, J. Yuan, J. Mater. Chem. C 3 (2015) 6589-6599.
DOI URL |
| [12] |
H.G. Liu, S.Q. Wu, C.Y. You, N. Tian, Y. Li, N. Chopra, Carbon 172 (2021) 569-596.
DOI URL |
| [13] | B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi, J. Liu, X.X. Wang, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Adv.Mater. 26 (2014) 3484-3489. |
| [14] | Z.P. Chen, C. Xu, C.Q. Ma, W.C. Ren, H.M. Cheng, Adv.Mater. 25 (2013) 1296-1300. |
| [15] |
M. Gonzalez, J. Baselga, J. Pozuelo, Carbon 147 (2019) 27-34.
DOI |
| [16] |
C. Wang, V. Murugadoss, J. Kong, Z.F. He, X.M. Mai, Q. Shao, Y.J. Chen, L. Guo, C.T. Liu, S. Angaiah, Z.H. Guo, Carbon 140 (2018) 696-733.
DOI URL |
| [17] |
O. Akhavan, Carbon 48 (2010) 509-519.
DOI URL |
| [18] |
Y. Chen, J.Z. Li, T. Li, L.K. Zhang, F.B. Meng, Carbon 180 (2021) 163-184.
DOI URL |
| [19] |
Y. Wang, F.B. Meng, F. Huang, Y. Li, X. Tian, Y. Mei, Z.W. Zhou, ACS Appl. Mater. Interfaces 12 (2020) 47811-47819.
DOI URL |
| [20] |
S.S. Wang, X.X. Sun, F. Xu, M.L. Yang, W.L. Yin, J.J. Li, Y.B. Li, Carbon 179 (2021) 469-476.
DOI URL |
| [21] |
B. Shen, Y. Li, D. Yi, W.T. Zhai, X.C. Wei, W.G. Zheng, Carbon 102 (2016) 154-160.
DOI URL |
| [22] |
L.L. Zhong, R.F. Yu, X.H. Hong, Text. Res. J. 91 (2021) 1167-1183.
DOI URL |
| [23] |
P. Kumar, F. Shahzad, S.M. Hong, C.M. Koo, RSC Adv. 6 (2016) 101283-101287.
DOI URL |
| [24] |
C.K. Song, X.Y. Meng, H. Chen, Z.G. Liu, Q. Zhan, Y.M. Sun, W.B. Lu, Y.Q. Dai, Compos. Commun. 24 (2021) 100632.
DOI URL |
| [25] |
S.T. Li, W.C. Li, J. Nie, D.Y. Liu, G.X. Sui, Carbon 143 (2019) 154-161.
DOI URL |
| [26] |
H.L. Fu, Z.P. Yang, Y.Y. Zhang, M. Zhu, Y.H. Jia, Z. Chao, D.M. Hu, Q.W. Li, Carbon 162 (2020) 490-496.
DOI URL |
| [27] |
Y. Yang, S. Chen, W.L. Li, P. Li, J.G. Ma, B.S. Li, X.N. Zhao, Z.S. Ju, H.C. Chang, L. Xiao, H.Y. Xu, Y.C. Liu, ACS Nano 14 (2020) 8754-8765.
DOI PMID |
| [28] |
P. Kumar, S. Yu, F. Shahzad, S.M. Hong, Y.H. Kim, C.M. Koo, Carbon 101 (2016) 120-128.
DOI URL |
| [29] | X.Y. Cao, J. Zhang, S.W. Chen, R.J. Varley, K. Pan, Adv.Funct. Mater. 30 (2020) 2003618. |
| [30] |
C.Y. Yu, J.N. An, R.C. Zhou, H. Xu, J.Y. Zhou, Q. Chen, G.Z. Sun, W. Huang, Small 16 (2020) 2000653.
DOI URL |
| [31] |
D.W. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z.C. Wang, Q. Shao, C. Wang, H. Liu, N. Lu, R.B. Wei, A. Subramania, Z.H. Guo, Polym. Rev. 59 (2019) 280-337.
DOI URL |
| [32] |
S.Y. Jin, M.H. Kim, Y.G. Jeong, Y.I. Yoon, W.H. Park, Mater. Des. 124 (2017) 69-77.
DOI URL |
| [33] |
Y. Wang, Y. Mei, F. Huang, X. Yang, Y. Li, J.Y. Li, F.B. Meng, Z.W. Zhou, Carbon 147 (2019) 490-500.
DOI URL |
| [34] | H. Ni, F.Y. Xu, A.P. Tomsia, E. Saiz, L. Jiang, Q.F. Cheng, ACS Appl. Mater. Inter- faces 9 (2017) 24987-24992. |
| [35] |
D. Zhang, A.B. Karki, D. Rutman, D.R. Young, A. Wang, D. Cocke, T.H. Ho, Z.H Guo, Polymer 50 (2009) 4189-4198.
DOI URL |
| [36] |
M.S.A. Rahaman, A.F. Ismail, A. Mustafa, Polym. Degrad. Stab. 92 (2007) 1421-1432.
DOI URL |
| [37] |
C. Valles, J.D. Nunez, A.M. Benito, W.K. Maser, Carbon 50 (2012) 835-844.
DOI URL |
| [38] |
L. Song, F. Khoerunnisa, W. Gao, W.H. Dou, T. Hayashi, K. Kaneko, M. Endo, P.M. Ajayan, Carbon 52 (2013) 608-612.
DOI URL |
| [39] |
R. Rozada, J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J.M.D. Tascon, Nano Res 6 (2013) 216-233.
DOI URL |
| [40] |
L. Kong, X.W. Yin, M.K. Han, X.Y. Yuan, Z.X. Hou, F. Ye, L.T. Zhang, L.F. Cheng, Z.W. Xu, J.F. Huang, Carbon 111 (2017) 94-102.
DOI URL |
| [41] |
C. Fan, B. Wu, R.G. Song, Y.T. Zhao, Y.H. Zhang, D.P. He, Carbon 155 (2019) 506-513.
DOI URL |
| [42] |
M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9 (2007) 1276-1291.
PMID |
| [43] |
G. Faggio, G. Messina, C. Lofaro, N. Lisi, A. Capasso, C J. Carbon Res. 6 (2020) 14.
DOI URL |
| [44] |
T. Ghosh, C. Biswas, J. Oh, G. Arabale, T. Hwang, N.D. Luong, M. Jin, Y.H. Lee, J.D. Nam, Chem. Mater. 24 (2012) 594-599.
DOI URL |
| [45] | L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li, C. Gao, Adv.Mater. 29 (2017) 1700589. |
| [46] |
B. Dai, X.P. Shao, Y. Ren, G.H. Wang, C.H. Pei, Y.J. Ma, Mater. Lett. 82 (2012) 188-190.
DOI URL |
| [47] |
J. Chen, J.M. Wu, H.Y. Ge, D. Zhao, C. Liu, X.F. Hong, Compos. Part A Appl. Sci. Manuf. 82 (2016) 141-150.
DOI URL |
| [48] |
D.G. Lai, X.X. Chen, G. Wang, X.H. Xu, Y. Wang, J. Mater. Chem. C 8 (2020) 8904-8916.
DOI URL |
| [49] |
D.G. Lai, X.X. Chen, Y. Wang, Carbon 158 (2020) 728-737.
DOI URL |
| [50] | G.Q. Xin, H.T. Sun, T. Hu, H.R. Fard, X. Sun, N. Koratkar, T. Borca-Tasciuc, J. Lian, Adv.Mater. 26 (2014) 4521-4526. |
| [51] |
Z. Wang, Z. Cheng, C.Q. Fang, X.L. Hou, L. Xie, Compos. Part A Appl. Sci. Manuf. 136 (2020) 105956.
DOI URL |
| [52] |
L. Wang, Z.L. Ma, Y.L. Zhang, L.X. Chen, D.P. Cao, J.W. Gu, SusMat 1 (2021) 413-431.
DOI URL |
| [53] |
S.W. Lu, J.Y. Shao, K.M. Ma, D. Chen, X.Q. Wang, L. Zhang, Q.S. Meng, J. Ma, Carbon 136 (2018) 387-394.
DOI URL |
| [54] |
Y.J. Wan, X.Y. Wang, X.M. Li, S.Y. Liao, Z.Q. Lin, Y.G. Hu, T. Zhao, X.L. Zeng, C.H. Li, S.H. Yu, P.L. Zhu, R. Sun, C.P. Wong, ACS Nano 14 (2020) 14134-14145.
DOI URL |
| [55] |
S. Kashi, R.K. Gupta, T. Baum, N. Kao, S.N. Bhattacharya, Mater. Des. 95 (2016) 119-126.
DOI URL |
| [56] |
J.B. Xi, Y.L. Li, E.Z. Zhou, Y.J. Liu, W.W. Gao, Y. Guo, J. Ying, Z.C. Chen, G.G. Chen, C. Gao, Carbon 135 (2018) 44-51.
DOI URL |
| [57] | L. Zhang, N.T. Alvarez, M.X. Zhang, M. Haase, R. Malik, D. Mast, V. Shanov, Car- bon 82 (2015) 353-359. |
| [58] |
E.Z. Zhou, J.B. Xi, Y. Guo, Y.J. Liu, Z. Xu, L. Peng, W.W. Gao, J. Ying, Z.C. Chen, C. Gao, Carbon 133 (2018) 316-322.
DOI URL |
| [59] |
P. Kumar, F. Shahzad, S. Yu, S.M. Hong, Y.H. Kim, C.M. Koo, Carbon 94 (2015) 494-500.
DOI URL |
| [60] | J.J. Zhang, Z.X. Wang, J.W. Li, Y.Q. Dong, A.N. He, G.G. Tan, Q.K. Man, B. Shen, J.Q. Wang, W.X. Xia, J. Shen, X.M. Wang, J. Mater. Sci.Technol. 96 (2022) 11-20. |
| [61] | P. Song, B. Liu, C.B. Liang, K.P. Ruan, H. Qiu, Z.L. Ma, Y.Q. Guo, J.W. Gu, Nanomi- cro Lett. 13 (2021) 91. |
| [62] |
Y.L. Zhang, K.P. Ruan, X.T. Shi, H. Qiu, Y. Pan, Y. Yan, J.W. Gu, Carbon 175 (2021) 271-280.
DOI URL |
| [63] |
N.C. Das, T.K. Chaki, D. Khastgir, A. Chakraborty, J. Appl. Polym. Sci. 80 (2001) 1601-1608.
DOI URL |
| [64] |
Q.F. Guan, Z.M. Han, K.P. Yang, H.B. Yang, Z.C. Ling, C.H. Yin, S.H. Yu, Nano Lett. 21 (2021) 2532-2537.
DOI URL |
| [1] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
| [2] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
| [3] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
| [4] | Chuanyin Xiong, Mengrui Li, Qing Han, Wei Zhao, Lei Dai, Yonghao Ni. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances [J]. J. Mater. Sci. Technol., 2022, 97(0): 190-200. |
| [5] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
| [6] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
| [7] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
| [8] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
| [9] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
| [10] | Donghai Li, Binbin Wang, Liangshun Luo, Xuewen Li, Yanjin Xu, BinQiang Li, Diween Hawezy, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 228-244. |
| [11] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
| [12] | Jianwen Le, Yuanfei Han, Peikun Qiu, Shaopeng Li, Guangfa Huang, Jianwei Mao, Weijie Lu. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 1-13. |
| [13] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
| [14] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
| [15] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
