J. Mater. Sci. Technol. ›› 2022, Vol. 109: 94-104.DOI: 10.1016/j.jmst.2021.08.054
• Research Article • Previous Articles Next Articles
Xinyuan Lv, Fang Ye(), Laifei Cheng(
), Litong Zhang
Received:
2021-07-27
Revised:
2021-08-22
Accepted:
2021-08-23
Published:
2021-10-24
Online:
2021-10-24
Contact:
Fang Ye,Laifei Cheng
About author:
chenglf@nwpu.edu.cn (L. Cheng).Xinyuan Lv, Fang Ye, Laifei Cheng, Litong Zhang. 3D printing “wire-on-sphere” hierarchical SiC nanowires / SiC whiskers foam for efficient high-temperature electromagnetic wave absorption[J]. J. Mater. Sci. Technol., 2022, 109: 94-104.
Fig. 2. “Wire-on-sphere” hierarchical structure of SiCnw/SiCw foam. (a) SiCnw/SiCw foam is formed by natural stacking of many (b) “wire-on-sphere” structural units, and each “wire-on-sphere” structural unit is composed of (c) SiCw of micro-scale and (d) SiCnw of nanoscale.
Fig. 3. Morphology and phase composition evolution of SiCnw/SiCw foam during preparation process. SEM images of (a) original SiCw, (b) single SiCw sphere, (c) SiCw foam, (d) SiCnw/SiCw foam, and (e) the neighboring “wire-on-sphere” structure in SiCnw/SiCw foam. (f) XRD patterns of original SiCw, SiCw foam, SiCnw/SiCw foam.
Fig. 4. Morphology and microstructure of SiCnw. (a) an individual “wire-on-sphere” structure consists of SiCnw and SiCw. (b) High-magnification SEM image and EDS (inset in (b)) of the SiCnw. (c) TEM image of SiCnw and the corresponding FFT pattern (inset in (c)). (d) HRTEM image of SiCnw in (c). (e) HRTEM image of the stacking fault from (d). (f) TEM image of SiCw and the corresponding SAED pattern and HRTEM image (inset in (f)).
Fig. 5. Room-temperature EWA performance of SiCnw/SiCw foam and SiCw foam. Dependence of (a) complex permittivity and (b) loss tangent on frequency in X-band. RC and |Zin-1| (inset in (d)) of (c) SiCnw/SiCw foam and (d) SiCw foam in X-band at different thicknesses.
Fig. 6. High-temperature EWA performance of SiCnw/SiCw foam and SiCw foam. Dependence of (a) ε', (b) ε", and (c) tan δ on measurement temperature (100-600 °C). (d) RC and EAB (inset in (d)) of SiCnw/SiCw foam at different temperature (100-600 °C) at their optimum thickness. (e) RC of SiCw foam at different temperatures. (f) Dependance of |Zin-1| on frequency for SiCnw/SiCw foam and SiCw foam at 100-600 °C.
Fig. 7. The permittivity at 10 GHz, RC curves with a maximum EAB, EABmax-RCmin plot of (a, b, c) SiCnw/SiCw foam and (d, e, f) SiCw foam after oxidation at 1000-1500 °C for 1 h.
Fig. 8. (a) TG curve of SiCnw/SiCw foam from 30 °C to 1500 °C in air. (b) Thickness of SiO2 layer on SiCnw and SiCw after oxidation at different temperatures. (c) Diameter ratio of SiO2 layer to SiCnw and SiCw after oxidation at different temperatures. Dependance of (d) |Zin-1| and (e) attenuation constant on frequency for oxidized and original SiCnw/SiCw foam. (f) ε'-ε" plot of SSF-1500. (g) Typical TEM images of SiCnw coated with SiO2 layer from all oxidized samples.
Empty Cell | Room-temperature (25 °C) | High-temperature (600 °C) | Performance retention after oxidation | Empty Cell | |||
---|---|---|---|---|---|---|---|
Materials | RCmin | EABmax | RCmin | EABmax | RCmin | EABmax | Refs. |
Empty Cell | (dB) | (GHz) | (dB) | (GHz) | (dB) | (GHz) | Empty Cell |
SiCnw/SiOC | -18.7 | 1.78 | [ | ||||
SiC/C | -20 | 7 | [ | ||||
Porous SiOC | -39.13 | 4.64 | [ | ||||
SiCf/Si3N4 | -13 | 4.8 | -13 | 2.5 | [ | ||
SiCf/SiC-SiCnw | -16.5 | 1.3 | -47.5 | 2.8 | [ | ||
SiC/SiCnw | -43 | 4 | [ | ||||
Binary SiC | -29 | 3.2 | -51 | 3.2 | [ | ||
Binary SiC | -47 | 3.2 | -51 | 2 | [ | ||
SiCnw/Si3N4nb | -45 | 8.4 | -26 | 4.2 | [ | ||
Graphene@Fe3O4/SiBCN | -43.78 | 3.2 | -15 | 3.2 | -57 (300 °C, 2 h) | 1.97 | [ |
-66 (600 °C, 2 h) | 2.69 | ||||||
SiCnw/SiCw foam | -57 | 4 | -15 | 3 | -64 (1000 °C, 1 h) | 3.4 | This work |
-50 (1100 °C, 1 h) | 3.1 | ||||||
-21 (1200 °C, 1 h) | 2.9 | ||||||
-16 (1300 °C, 1 h) | 2.7 | ||||||
-27 (1400 °C, 1 h) | 3.9 | ||||||
-38 (1500 °C, 1 h) | 3.3 |
Table 1. Performance comparison of high-temperature EWA materials.
Empty Cell | Room-temperature (25 °C) | High-temperature (600 °C) | Performance retention after oxidation | Empty Cell | |||
---|---|---|---|---|---|---|---|
Materials | RCmin | EABmax | RCmin | EABmax | RCmin | EABmax | Refs. |
Empty Cell | (dB) | (GHz) | (dB) | (GHz) | (dB) | (GHz) | Empty Cell |
SiCnw/SiOC | -18.7 | 1.78 | [ | ||||
SiC/C | -20 | 7 | [ | ||||
Porous SiOC | -39.13 | 4.64 | [ | ||||
SiCf/Si3N4 | -13 | 4.8 | -13 | 2.5 | [ | ||
SiCf/SiC-SiCnw | -16.5 | 1.3 | -47.5 | 2.8 | [ | ||
SiC/SiCnw | -43 | 4 | [ | ||||
Binary SiC | -29 | 3.2 | -51 | 3.2 | [ | ||
Binary SiC | -47 | 3.2 | -51 | 2 | [ | ||
SiCnw/Si3N4nb | -45 | 8.4 | -26 | 4.2 | [ | ||
Graphene@Fe3O4/SiBCN | -43.78 | 3.2 | -15 | 3.2 | -57 (300 °C, 2 h) | 1.97 | [ |
-66 (600 °C, 2 h) | 2.69 | ||||||
SiCnw/SiCw foam | -57 | 4 | -15 | 3 | -64 (1000 °C, 1 h) | 3.4 | This work |
-50 (1100 °C, 1 h) | 3.1 | ||||||
-21 (1200 °C, 1 h) | 2.9 | ||||||
-16 (1300 °C, 1 h) | 2.7 | ||||||
-27 (1400 °C, 1 h) | 3.9 | ||||||
-38 (1500 °C, 1 h) | 3.3 |
[1] |
X. Yin, L. Kong, L. Zhang, L. Cheng, N. Travitzky, P. Greil, Int. Mater. Rev. 59 (2014) 326-355.
DOI URL |
[2] |
H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, H. Peng, Adv. Mater. 26 (2014) 8120-8125.
DOI URL |
[3] |
X. Li, L. Yu, W. Zhao, Y. Shi, L. Yu, Y. Dong, Y. Zhu, Y. Fu, X. Liu, F. Fu, Chem. Eng. J. 379 (2020) 122393.
DOI URL |
[4] |
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16 (2004) 401-405.
DOI URL |
[5] |
X. Zhou, Z. Jia, X. Zhang, B. Wang, W. Wu, X. Liu, B. Xu, G. Wu, J. Mater. Sci. Technol. 87 (2021) 120-132.
DOI URL |
[6] |
X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu, T. Li, J. Mater. Sci. Technol. 72 (2021) 93-103.
DOI URL |
[7] | J. Ge, S. Liu, L. Liu, Y. Cui, F. Meng, Y. Li, X. Zhang, F. Wang, J. Mater. Sci. Tech-nol. 81 (2021) 190-202. |
[8] |
F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang, X. Yin, Y. Zhou, H. Tao, Y. Liu, L. Cheng, L. Zhang, H. Li, Adv. Funct. Mater. 28 (2018) 1707205.
DOI URL |
[9] |
H. Pan, X. Yin, J. Xue, L. Cheng, L. Zhang, Carbon N Y 107 (2016) 36-45.
DOI URL |
[10] |
R. Guo, Y. Fan, L. Wang, W. Jiang, Carbon N Y 169 (2020) 214-224.
DOI URL |
[11] |
B. Wen, M.-.S. Cao, Z.-.L. Hou, W.-.L. Song, L. Zhang, M.-.M. Lu, H.-.B. Jin, X.-.Y. Fang, W.-.Z. Wang, J. Yuan, Carbon N Y 65 (2013) 124-139.
DOI URL |
[12] | Z. Hou, X. Yin, H. Xu, H. Wei, M. Li, L. Cheng, L. Zhang, ACS Appl. Mater. Inter-faces 11 (2019) 5364-5372. |
[13] |
X.W. Yin, L.F. Cheng, L.T. Zhang, N. Travitzky, P. Greil, Int. Mater. Rev. 62 (2017) 117-172.
DOI URL |
[14] |
C. Guo, L. Cheng, F. Ye, Ceram. Int. 47 (2021) 9569-9577.
DOI URL |
[15] |
C. Liang, Z. Wang, Chem. Eng. J. 373 (2019) 598-605.
DOI URL |
[16] |
Z. Cai, L. Su, H. Wang, M. Niu, L. Tao, D. Lu, L. Xu, M. Li, H. Gao, ACS Appl. Mater. Interfaces 13 (2021) 16704-16712.
DOI URL |
[17] |
X. Lan, Y. Li, Z. Wang, Chem. Eng. J. 397 (2020) 125250.
DOI URL |
[18] |
X. Lan, Z. Wang, Carbon N Y 170 (2020) 517-526.
DOI URL |
[19] |
J. Kuang, W. Cao, Appl. Phys. Lett. 103 (2013) 112906.
DOI URL |
[20] |
B. Du, C. Hong, X. Zhang, J. Wang, Q. Qu, J. Eur. Ceram. Soc. 38 (2018) 2272-2278.
DOI URL |
[21] |
L. Zhuang, Q.G. Fu, T.Y. Liu, B.Y. Tan, J. Alloys Compd. 675 (2016) 348-354.
DOI URL |
[22] | S.J. Zeng, J.S. Yu, X.G. Zhou, H.L. Wang, Mater. Sci. Forum. 4326 (2016) 32-37. |
[23] |
W. Wang, Q. Fu, B. Tan, J. Alloys Compd. 726 (2017) 866-874.
DOI URL |
[24] |
W. Duan, X. Yin, F. Cao, Y. Jia, Y. Xie, P. Greil, N. Travitzky, Mater. Lett. 159 (2015) 257-260.
DOI URL |
[25] |
Q.G. Fu, B.Y. Tan, L. Zhuang, J.Y. Jing, Mater. Sci. Eng. A 672 (2016) 121-128.
DOI URL |
[26] | C. Stabler, E. Ionescu, M. Graczyk-Zajac, I. Gonzalo-Juan, R. Riedel, J. Am. Ce-ram. Soc. 101 (2018) 4817-4856. |
[27] |
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, Adv. Mater. 28 (2016) 486-490.
DOI URL |
[28] |
X. Li, X. Yin, C. Song, M. Han, H. Xu, W. Duan, L. Cheng, L. Zhang, Adv. Funct. Mater. 28 (2018) 1803938.
DOI URL |
[29] |
T. Han, R. Luo, G. Cui, L. Wang, J. Eur. Ceram. Soc. 39 (2019) 1743-1756.
DOI URL |
[30] |
W. Duan, X. Yin, Q. Li, X. Liu, L. Cheng, L. Zhang, J. Eur. Ceram. Soc. 34 (2014) 257-266.
DOI URL |
[31] |
Q. Zhou, X. Yin, F. Ye, Z. Tang, R. Mo, L. Cheng, Ceram. Int. 45 (2019) 6514-6522.
DOI URL |
[32] |
C. Luo, T. Jiao, J. Gu, Y. Tang, J. Kong, ACS Appl. Mater. Interfaces 10 (2018) 39307-39318.
DOI URL |
[33] |
W. Li, C. Li, L. Lin, Y. Wang, J. Zhang, J. Mater. Sci. Technol. 35 (2019) 2658-2664.
DOI URL |
[34] |
C. Chen, S. Zeng, X. Han, Y. Tan, W. Feng, H. Shen, S. Peng, H. Zhang, J. Mater. Sci. Technol. 54 (2020) 223-229.
DOI |
[35] | C. Liang, Z. Wang, L. Wu, X. Zhang, H. Wang, Z. Wang, ACS Appl. Mater. Inter-faces 35 (2017) 29950-29957. |
[1] | Fenghui Cao, Jia Xu, Minjie Liu, Feng Yan, Qiuyun Ouyang, Xitian Zhang, Xiaoli Zhang, Yujin Chen. Regulation of impedance matching feature and electronic structure of nitrogen-doped carbon nanotubes for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 108(0): 1-9. |
[2] | Panpan Zhou, Meng Wang, Zhi Song, Yongkang Guan, Lixi Wang, Qitu Zhang. Coral-like carbon-based composite derived from layered structure Co-MOF-71 with outstanding impedance matching and tunable microwave absorption performance [J]. J. Mater. Sci. Technol., 2022, 108(0): 10-17. |
[3] | Jun Wei Chua, Xinwei Li, Tao Li, Beng Wah Chua, Xiang Yu, Wei Zhai. Customisable sound absorption properties of functionally graded metallic foams [J]. J. Mater. Sci. Technol., 2022, 108(0): 196-207. |
[4] | Chenxi Wang, Zirui Jia, Shuangqiao He, Jixi Zhou, Shuo Zhang, Mengli Tian, Bingbing Wang, Guanglei Wu. Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation [J]. J. Mater. Sci. Technol., 2022, 108(0): 236-243. |
[5] | Tong Gao, Zhengyu Zhang, Yixing Li, Yujuan Song, Huawei Rong, Xuefeng Zhang. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 108(0): 37-45. |
[6] | Hua Jian, Qinrui Du, Qiaoqiao Men, Li Guan, Ruosong Li, Bingbing Fan, Xin Zhang, Xiaoqin Guo, Biao Zhao, Rui Zhang. Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO2/CNT composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 105-113. |
[7] | Zhen Yu, Rui Zhou, Mingwei Ma, Runqiu Zhu, Peng Miao, Pei Liu, Jie Kong. ZnO/nitrogen-doped carbon nanocomplex with controlled morphology for highly efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 114(0): 206-214. |
[8] | Xuejiao Zhou, Junwu Wen, Zhenni Wang, Xiaohua Ma, Hongjing Wu. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx Mxene [J]. J. Mater. Sci. Technol., 2022, 115(0): 148-155. |
[9] | Jijun Wang, Songlin Yu, Qingqing Wu, Yan Li, Fangyuan Li, Xiao Zhou, Yuhua Chen, Bingzhen Li, Panbo Liu. Heterogeneous junctions of magnetic Ni core@binary dielectric shells toward high-efficiency microwave attenuation [J]. J. Mater. Sci. Technol., 2022, 115(0): 71-80. |
[10] | Fei Pan, Lei Cai, Yanyan Dong, Xiaojie Zhu, Yuyang Shi, Wei Lu. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 101(0): 85-94. |
[11] | Weiting Li, Xudong Yang, Kunming Yang, Chunnian He, Junwei Sha, Chunsheng Shi, Yunhui Mei, Jiajun Li, Naiqin Zhao. Simultaneously optimizing pore morphology and enhancing mechanical properties of Al-Si alloy composite foams by graphene nanosheets [J]. J. Mater. Sci. Technol., 2022, 101(0): 60-70. |
[12] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
[13] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
[14] | Qiaolei Li, Xiaolong An, Jingjing Liang, Yongsheng Liu, Kehui Hu, Zhigang Lu, Xinyan Yue, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Balancing flexural strength and porosity in DLP-3D printing Al2O3 cores for hollow turbine blades [J]. J. Mater. Sci. Technol., 2022, 104(0): 19-32. |
[15] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||