J. Mater. Sci. Technol. ›› 2022, Vol. 109: 105-113.DOI: 10.1016/j.jmst.2021.07.060
• Research Article • Previous Articles Next Articles
Hua Jiana, Qinrui Dub,c, Qiaoqiao Mena, Li Guana, Ruosong Lib,*(), Bingbing Fand, Xin Zhange, Xiaoqin Guoa, Biao Zhaoa,d,*(
), Rui Zhanga,d,f
Received:
2021-07-07
Revised:
2021-07-24
Accepted:
2021-07-31
Published:
2022-05-20
Online:
2021-11-06
Contact:
Ruosong Li,Biao Zhao
About author:
biao_zhao@zua.edu.cn (B. Zhao).Hua Jian, Qinrui Du, Qiaoqiao Men, Li Guan, Ruosong Li, Bingbing Fan, Xin Zhang, Xiaoqin Guo, Biao Zhao, Rui Zhang. Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO2/CNT composites[J]. J. Mater. Sci. Technol., 2022, 109: 105-113.
Fig. 2. SEM images of (a, b) TiO2/CNT/PS and (c, d) bowl-like TiO2/CNT composites prepared by hierarchical filtrating; and (e, f) TiO2/CNT/PS and (g, h) honeycomb TiO2/CNT composites prepared by mixing filtrating.
Fig. 3. (a) XRD patterns of TiO2/CNT/PS and TiO2/CNT composites; (b) Raman spectra of honeycomb and bowl-like TiO2/CNT composites; (c) TGA and DSC diagram of TiO2/CNT/PS composites; XPS high-resolution survey of (d) C 1 s, (e) O 1 s and (f) Ti 2p; N2-adsorption-desorption curve of (g) honeycomb and (h) bowl-like TiO2/CNT composites, and (i) pore width distribution.
Fig. 4. (a) Real and (b) imaginary complex permittivity, and (c) dielectric loss tangent of bowl-like TiO2/CNT composites; (d) real and (e) imaginary complex permittivity, and (f) dielectric loss tangent of honeycomb TiO2/CNT composites.
Fig. 5. Reflection loss and impedance matching of (a, a1) H3, (b, b1) H5, (c, c1) H8, (d, d1) H10, (e, e1) M3, (f, f1) M5, (g, g1) M8, and (h, h1) M10, respectively.
Empty Cell | Absorber | Thickness (mm) | EAB (GHz) | RLmin (dB) | Refs. |
---|---|---|---|---|---|
CNT-based | 30 wt% CNT@TiO2 sponge | 2.0 | 2.76 | -31.8 | [ |
25 wt% MWCNT@TiO2-C | 2.5 | 3.1 | -53.2 | [ | |
10 wt% PCHM/CNT | 2.8 | 3.6 | -34.6 | [ | |
50 wt% LAS/CNT | 2.0 | 5.4 | -50.49 | [ | |
TiO2/carbon materials | 20 wt% TiO2/Co/carbon nanofibers | 2.5 | 6.8 | -57.2 | [ |
40 wt% TiO2/C/Co | 2.5 | 5 | -42 | [ | |
45 wt% Co/TiO2-C | 3.0 | 3.04 | -41.1 | [ | |
honeycomb | 50 wt% Honeycomb nano-Fe3O4@C | 3.5 | 5.04 | -46.4 | [ |
50 wt% Honeycomb porous carbon | 2.5 | 6.52 | -26.0 | [ | |
30 wt% Honeycomb SnO2 | 2.0 | 5.6 | -37.6 | [ | |
10 wt% N, S-codoped honeycomb-like C/Ni3S2 | 2.5 | 7.0 | -46.8 | [ | |
50 wt% Honeycomb SCFs@Fe3O4@FeO | 1.9 | 6.1 | -40.8 | [ | |
15 wt% honeycomb TiO2/CNT | 2.1 | 4.3 | -34.8 | This study | |
bowl-like | 20 wt% Bowl-like carbon nanoparticles | 1.5 | 4.2 | -45.3 | [ |
50 wt% Polyhedron-bowl Co/CoO | 1.7 | 3.7 | -45.3 | [ | |
15 wt% Bowl-like TiO2/CNT | 1.5 | 4.2 | -38.6 | This study |
Table 1. Recent progress on CNT-based, TiO2/carbon materials, honeycomb and bowl-like absorbers.
Empty Cell | Absorber | Thickness (mm) | EAB (GHz) | RLmin (dB) | Refs. |
---|---|---|---|---|---|
CNT-based | 30 wt% CNT@TiO2 sponge | 2.0 | 2.76 | -31.8 | [ |
25 wt% MWCNT@TiO2-C | 2.5 | 3.1 | -53.2 | [ | |
10 wt% PCHM/CNT | 2.8 | 3.6 | -34.6 | [ | |
50 wt% LAS/CNT | 2.0 | 5.4 | -50.49 | [ | |
TiO2/carbon materials | 20 wt% TiO2/Co/carbon nanofibers | 2.5 | 6.8 | -57.2 | [ |
40 wt% TiO2/C/Co | 2.5 | 5 | -42 | [ | |
45 wt% Co/TiO2-C | 3.0 | 3.04 | -41.1 | [ | |
honeycomb | 50 wt% Honeycomb nano-Fe3O4@C | 3.5 | 5.04 | -46.4 | [ |
50 wt% Honeycomb porous carbon | 2.5 | 6.52 | -26.0 | [ | |
30 wt% Honeycomb SnO2 | 2.0 | 5.6 | -37.6 | [ | |
10 wt% N, S-codoped honeycomb-like C/Ni3S2 | 2.5 | 7.0 | -46.8 | [ | |
50 wt% Honeycomb SCFs@Fe3O4@FeO | 1.9 | 6.1 | -40.8 | [ | |
15 wt% honeycomb TiO2/CNT | 2.1 | 4.3 | -34.8 | This study | |
bowl-like | 20 wt% Bowl-like carbon nanoparticles | 1.5 | 4.2 | -45.3 | [ |
50 wt% Polyhedron-bowl Co/CoO | 1.7 | 3.7 | -45.3 | [ | |
15 wt% Bowl-like TiO2/CNT | 1.5 | 4.2 | -38.6 | This study |
[1] |
Y. Zhou, B. Zhao, H. Chen, H. Xiang, F. Dai, S. Wu, W. Xu, J. Mater. Sci. Technol. 74 (2021) 105-118.
DOI URL |
[2] |
J. Liang, H. Kou, S. Ding, Adv. Funct. Mater. 31 (2021) 2007801.
DOI URL |
[3] |
A.K. Dhami, Environ. Monit. Assess. 184 (2012) 6507-6512.
DOI PMID |
[4] |
T. Hou, Z. Jia, A. Feng, Z. Zhou, X. Liu, H. Lv, G. Wu, J. Mater. Sci. Technol. 68 (2021) 61-69.
DOI URL |
[5] |
H. Liang, J. Liu, Y. Zhang, L. Luo, H. Wu, Compos. Part B 178 (2019) 107507.
DOI URL |
[6] |
Q. Liao, M. He, Y. Zhou, S. Nie, Y. Wang, S. Hu, H. Yang, H. Li, Y. Tong, ACS Appl. Mater. Interfaces 10 (2018) 29136-29144.
DOI URL |
[7] | F. Zhang, Z. Jia, Z. Wang, C. Zhang, B. Wang, B. Xu, X. Liu, G. Wu, Mater. Today Phys 20 (2021) 100475. |
[8] |
Z. Mo, R. Yang, D. Lu, L. Yang, Q. Hu, H. Li, H. Zhu, Z. Tang, X. Gui, Carbon N Y 144 (2019) 433-439.
DOI URL |
[9] |
H. Liang, H. Xing, M. Qin, H. Wu, Compos. Part A 135 (2020) 105959.
DOI URL |
[10] |
J. Zhao, J. Zhang, L. Wang, S. Lyu, W. Ye, B.B. Xu, H. Qiu, L. Chen, J. Gu, Compos. Part A 129 (2020) 105714.
DOI URL |
[11] |
H. Zhang, B. Zhao, F. Dai, H. Xiang, Z. Zhang, Y. Zhou, J. Mater. Sci. Technol. 77 (2021) 58-65.
DOI URL |
[12] |
J. Dong, R. Ullal, J. Han, S. Wei, X. Ouyang, J. Dong, W. Gao, J. Mater. Chem. A 3 (2015) 5285-5288.
DOI URL |
[13] |
T. Xia, C. Zhang, N.A. Oyler, X. Chen, Adv. Mater. 25 (2013) 6905-6910.
DOI URL |
[14] |
L. Tian, J. Xu, M. Just, M. Green, L. Liu, X. Chen, J. Mater. Chem. C 5 (2017) 4645-4653.
DOI URL |
[15] | J. Xu, X. Qi, C. Luo, J. Qiao, R. Xie, Y. Sun, W. Zhong, Q. Fu, C. Pan, Nanotech-nology 28 (2017) 425701. |
[16] |
X. Zhang, G. Ji, W. Liu, X. Zhang, Q. Gao, Y. Li, Y. Du, J. Mater. Chem. C 4 (2016) 1860-1870.
DOI URL |
[17] |
X. Fu, B. Yang, W. Chen, Z. Li, H. Yan, X. Zhao, L. Zuo, J. Mater. Sci. Technol. 76 (2021) 166-173.
DOI URL |
[18] |
J. Qiao, X. Zhang, D. Xu, L. Kong, L. Lv, F. Yang, F. Wang, W. Liu, J. Liu, Chem. Eng. J. 380 (2020) 122591.
DOI URL |
[19] |
S. Kang, S. Qiao, Y. Cao, Z. Hu, J. Yu, Y. Wang, J. Zhu, ACS Appl. Mater. Interfaces 12 (2020) 46455-46465.
DOI URL |
[20] |
J. Liang, J. Chen, H. Shen, K. Hu, B. Zhao, J. Kong, Chem. Mater. 33 (2021) 1789-1798.
DOI URL |
[21] |
M. Yang, Y. Yuan, W. Yin, S. Yang, Q. Peng, J. Li, Y. Li, X. He, Appl. Surf. Sci. 469 (2019) 607-616.
DOI URL |
[22] |
Q. Liao, M. He, Y. Zhou, S. Nie, Y. Wang, B. Wang, X. Yang, X. Bu, R. Wang, Langmuir 34 (2018) 15854-15863.
DOI URL |
[23] |
H. Wu, J. Liu, H. Liang, D. Zang, Chem. Eng. J. 393 (2020) 124743.
DOI URL |
[24] |
B. Zhao, B. Fan, Y. Xu, G. Shao, X. Wang, W. Zhao, R. Zhang, ACS Appl. Mater. Interfaces 7 (2015) 26217-26225.
DOI URL |
[25] | B. Zhao, Y. Li, J. Liu, L. Fan, K. Gao, Z. Bai, L. Liang, X. Guo, R. Zhang, Crysteng-comm 21 (2019) 816-826. |
[26] |
J. Fu, W. Yang, L. Hou, Z. Chen, T. Qiu, H. Yang, Y. Li, Ind. Eng. Chem. Res. 56 (2017) 11460-11466.
DOI URL |
[27] |
H. Xu, X. Yin, M. Li, F. Ye, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Carbon N Y 132 (2018) 343-351.
DOI URL |
[28] |
Z. Lin, H. Tian, F. Xu, X. Yang, Y. Mai, X. Feng, Polym. Chem.-Uk 7 (2016) 2092-2098.
DOI URL |
[29] |
J. Liu, H. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z. Yu, Adv. Mater. 29 (2017) 1702367.
DOI URL |
[30] |
Y. Ding, J. Zhao, D. Zhang, S. Song, G. Wang, Surf. Coat. Technol. 307 (2016) 177-181.
DOI URL |
[31] |
H.N. Umh, S. Yu, Y.H. Kim, S.Y. Lee, J. Yi, ACS Appl. Mater. Interfaces 8 (2016) 15802-15808.
DOI URL |
[32] |
L. Guo, L. Xu, Z. Xu, G. Duan, Y. Wang, W. Cai, Y. Wang, T. Li, Sens. Actuat. B 231 (2016) 450-457.
DOI URL |
[33] | R. Wang, P. Bai, B. Zhao, Z. Bai, X. Guo, R. Zhang, J. Mater. Sci.: Mater. Electron. 55 (2020) 1-10. |
[34] | Y. Deng, Y. Zheng, D. Zhang, C. Han, A. Cheng, J. Shen, G. Zeng, H. Zhang, Car-bon N Y 169 (2020) 118-128. |
[35] |
J. Qiao, X. Zhang, C. Liu, L. Lyu, Z. Wang, L. Wu, W. Liu, F. Wang, J. Liu, Compos. Part B 200 (2020) 108343.
DOI URL |
[36] |
M. Chi, X. Sun, A. Sujan, Z. Davis, B.J. Tatarchuk, Fuel 238 (2019) 454-461.
DOI URL |
[37] | C. Niculăescu, L. Olar, R. Stefan, M. Todica, C.V. Pop, Studia Universitatis Babe ș-Bolyai Chemia 63 (2018) 63-70. |
[38] |
F.M. Uhl, C.A. Wilkie, Polym. Degrad. Stabil. 76 (2002) 111-122.
DOI URL |
[39] |
Y. Yin, X. Liu, X. Wei, R. Yu, J. Shui, ACS Appl. Mater. Interfaces 8 (2016) 34686-34698.
DOI URL |
[40] |
L. Liang, R. Yang, G. Han, Y. Feng, B. Zhao, R. Zhang, Y. Wang, C. Liu, ACS Appl. Mater. Interfaces 12 (2019) 2644-2654.
DOI URL |
[41] |
X. Zhou, Z. Jia, X. Zhang, B. Wang, W. Wu, X. Liu, B. Xu, G. Wu, J. Mater. Sci. Technol. 87 (2021) 120-132.
DOI URL |
[42] |
M. Li, X. Fan, H. Xu, F. Ye, J. Xue, X. Li, L. Cheng, J. Mater. Sci. Technol. 59 (2020) 164-172.
DOI URL |
[43] |
Y. Kang, Z. Jiang, T. Ma, Z. Chu, G. Li, ACS Appl. Mater. Interfaces 8 (2016) 32468-32476.
DOI URL |
[44] |
W. Zhang, B. Zhao, N. Ni, H. Xiang, F. Dai, S. Wu, Y. Zhou, J. Mater. Sci. Technol. 87 (2021) 155-166.
DOI URL |
[45] |
J. Xu, L. Sun, X. Qi, Z. Wang, Q. Fu, C. Pan, J. Mater. Chem. C 7 (2019) 6152-6160.
DOI URL |
[46] |
X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang, X. Liang, Q. Zhou, H. Liu, S. Cui, J. Adv. Ceram. 8 (2019) 479-488.
DOI URL |
[47] |
M. Cao, Y. Cai, P. He, J. Shu, W. Cao, J. Yuan, Chem. Eng. J. 359 (2019) 1265-1302.
DOI URL |
[48] |
Z. Wu, K. Pei, L. Xing, X. Yu, W. You, R. Che, Adv. Funct. Mater. 29 (2019) 1901448.
DOI URL |
[49] |
Y. Qiu, Y. Lin, H. Yang, L. Wang, M. Wang, B. Wen, Chem. Eng. J. 383 (2020) 123207.
DOI URL |
[50] |
K.S. Cole, R.H. Cole, J. Chem. Phys. 9 (1941) 341-351.
DOI URL |
[51] |
W. Zhang, B. Zhao, H. Xiang, F. Dai, S. Wu, Y. Zhou, J. Adv. Ceram. 10 (2021) 62-77.
DOI URL |
[52] |
J. Ding, L. Wang, Y. Zhao, L. Xing, X. Yu, G. Chen, J. Zhang, R. Che, Small 15 (2019) 1902885.
DOI URL |
[53] | H. Wang, L. Xiang, W. Wei, J. An, J. He, C. Gong, Y. Hou, ACS Appl. Mater. Inter-faces 9 (2017) 42102-42110. |
[54] |
T. Hou, Z. Jia, B. Wang, H. Li, X. Liu, Q. Chi, G. Wu, Chem. Eng. J. 422 (2021) 130079.
DOI URL |
[55] |
B. Du, M. Cai, X. Wang, J. Qian, C. He, A. Shui, J. Adv. Ceram. 10 (2021) 832-842.
DOI URL |
[56] |
L. Kong, X. Yin, F. Ye, Q. Li, L. Zhang, L. Cheng, J. Phys. Chem. C 117 (2013) 2135-2146.
DOI URL |
[57] |
D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Carbon N Y 111 (2017) 722-732.
DOI URL |
[58] |
X. Zhou, Z. Jia, X. Zhang, B. Wang, X. Liu, B. Xu, L. Bi, G. Wu, Chem. Eng. J. 420 (2021) 129907.
DOI URL |
[59] |
B. Zhao, X. Li, S. Zeng, R. Wang, L. Wang, R. Che, R. Zhang, C.B. Park, ACS Appl. Mater. Interfaces 12 (2020) 50793-50802.
DOI URL |
[60] |
G. Wu, Z. Jia, X. Zhou, G. Nie, H. Lv, Compos. Part A 128 (2020) 105687.
DOI URL |
[61] |
H. Lv, Y. Guo, G. Wu, G. Ji, Y. Zhao, Z.J. Xu, ACS Appl. Mater. Interfaces 9 (2017) 5660-5668.
DOI URL |
[62] |
M. Li, X. Fan, H. Xu, F. Ye, J. Xue, X. Li, L. Cheng, J. Mater. Sci. Technol. 59 (2020) 164-172.
DOI URL |
[63] |
G. Ma, L. Xia, H. Yang, X. Wang, T. Zhang, X. Huang, L. Xiong, C. Qin, G. Wen, Chem. Eng. J. 418 (2021) 129429.
DOI URL |
[64] |
S. Ur Rehman, J. Liu, Z. Fang, J. Wang, R. Ahmed, C. Wang, H. Bi, A.C.S. Appl, Nano Mater 2 (2019) 4 451-4 461.
DOI URL |
[65] |
L. Wang, X. Bai, T. Zhao, Y. Lin, J. Colloid Interf. Sci. 580 (2020) 126-134.
DOI PMID |
[1] | Jun He, Shengtao Gao, Yuanchun Zhang, Xingzhao Zhang, Hanxu Li. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 104(0): 98-108. |
[2] | Menglong Xu, Linfeng Wei, Li Ma, Jiawei Lu, Tao Liu, Ling Zhang, Ling Zhao, Chul B. Park. Microcellular foamed polyamide 6/carbon nanotube composites with superior electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 215-224. |
[3] | Yue Liu, Xuehua Liu, Xinyu E, Bingbing Wang, Zirui Jia, Qingguo Chi, Guanglei Wu. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103(0): 157-164. |
[4] | Fan Wang, Weihua Gu, Jiabin Chen, Qianqian Huang, Mingyang Han, Gehuan Wang, Guangbin Ji. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption [J]. J. Mater. Sci. Technol., 2022, 105(0): 92-100. |
[5] | Rui Guo, Qi Zheng, Lianjun Wang, Yuchi Fan, Wan Jiang. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 108-117. |
[6] | Fei Pan, Lei Cai, Yanyan Dong, Xiaojie Zhu, Yuyang Shi, Wei Lu. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 101(0): 85-94. |
[7] | Yingzhi Jiao, Siyao Cheng, Fan Wu, Jiaoyan Shi, Aming Xie, Xufei Zhu, Wei Dong. Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 100(0): 206-215. |
[8] | Zhen Yu, Rui Zhou, Mingwei Ma, Runqiu Zhu, Peng Miao, Pei Liu, Jie Kong. ZnO/nitrogen-doped carbon nanocomplex with controlled morphology for highly efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 114(0): 206-214. |
[9] | Ting-Ting Liu, Mao-Qing Cao, Yong-Sheng Fang, Yu-Hang Zhu, Mao-Sheng Cao. Green building materials lit up by electromagnetic absorption function: A review [J]. J. Mater. Sci. Technol., 2022, 112(0): 329-344. |
[10] | Chunhua Sun, Zirui Jia, Shuang Xu, Dongqi Hu, Chuanhui Zhang, Guanglei Wu. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 128-137. |
[11] | Zibao Jiao, Wenjun Huyan, Junru Yao, Zhengjun Yao, Jintang Zhou, Peijiang Liu. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113(0): 166-174. |
[12] | Fenghui Cao, Jia Xu, Minjie Liu, Feng Yan, Qiuyun Ouyang, Xitian Zhang, Xiaoli Zhang, Yujin Chen. Regulation of impedance matching feature and electronic structure of nitrogen-doped carbon nanotubes for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 108(0): 1-9. |
[13] | Chenxi Wang, Zirui Jia, Shuangqiao He, Jixi Zhou, Shuo Zhang, Mengli Tian, Bingbing Wang, Guanglei Wu. Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation [J]. J. Mater. Sci. Technol., 2022, 108(0): 236-243. |
[14] | Jiabin Chen, Jing Zheng, Qianqian Huang, Gehuan Wang, Guangbin Ji. Carbon fibers@Co-ZIFs derivations composites as highly efficient electromagnetic wave absorbers [J]. J. Mater. Sci. Technol., 2021, 94(0): 239-246. |
[15] | Xinfeng Zhou, Zirui Jia, Xingxue Zhang, Bingbing Wang, Wei Wu, Xuehua Liu, Binghui Xu, Guanglei Wu. Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth [J]. J. Mater. Sci. Technol., 2021, 87(0): 120-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||