J. Mater. Sci. Technol. ›› 2022, Vol. 108: 1-9.DOI: 10.1016/j.jmst.2021.08.048
• Research Article • Next Articles
Fenghui Caoa,b, Jia Xua, Minjie Liua, Feng Yana,*(), Qiuyun Ouyanga, Xitian Zhangc, Xiaoli Zhangd, Yujin Chena,d,*(
)
Received:
2021-06-24
Revised:
2021-08-23
Accepted:
2021-08-23
Published:
2021-10-21
Online:
2021-10-21
Contact:
Feng Yan,Yujin Chen
About author:
chenyujin@hrbeu.edu.cn (Y.Chen).Fenghui Cao, Jia Xu, Minjie Liu, Feng Yan, Qiuyun Ouyang, Xitian Zhang, Xiaoli Zhang, Yujin Chen. Regulation of impedance matching feature and electronic structure of nitrogen-doped carbon nanotubes for high-performance electromagnetic wave absorption[J]. J. Mater. Sci. Technol., 2022, 108: 1-9.
Fig. 3. Structural characterizations of the Fe2Ni1@NCNT@SiO2. (a-d) TEM images, (e, f) HRTEM images, and (g) TEM image and corresponding the EDX elemental mappings of Fe, Ni, C, N and Si. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
Fig. 4. (a) N2-sorption isotherms, (b) Pore size distributions, (c) Comparison of BET surface areas, (d) Raman spectra, and (e, f) Magnetization hysteresis loops of the FexNiy@NCNT@SiO2 and Fe3C/Fe@NCNT@SiO2.
Fig. 5. ε′-f curves (a), ε″-f curves (b), tanδe-f curves (c), εc″-f curves (d) and εp″-f curves (e) of the FexNiy@NCNT@SiO2 and Fe3C/Fe@NCNT@SiO2. (f) The Mz-f curves of Fe2Ni1@NCNT@SiO2.
Fig. 6. (a) The dipoles of the Fe3C/Fe@NCNT@SiO2 and FexNiy@NCNT@SiO2. (b) The projected density of states of the Fe3C/Fe@NCNT@SiO2 and FexNiy@NCNT@SiO2.
Fig. 7. (a) 3D projection plots of RL of Fe3C/Fe@NCNT@SiO2, (b, c) 3D projection plots of RL of Fe2Ni1@NCNT@SiO2. The region defined by the thin black dotted line represents RL < -10 dB. (d) RL-f curves of Fe3C/Fe@NCNT@SiO2, (e) RL - f curves of Fe2Ni1@NCNT@SiO2, (f) comparison of RL,min of Fe3C/Fe@NCNT@SiO2 and RL,min of FexNiy@NCNT@SiO2, (g) RL-f curves of Fe1Ni1@NCNT@SiO2, (h) RL-f curves of Fe1Ni2@NCNT@SiO2. (i) Comparison of EAB values of Fe3C/Fe@NCNT@SiO2 and FexNiy@NCNT@SiO2.
[1] |
M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang, J. Yuan, Adv. Mater. 32 (2020) 1907156.
DOI URL |
[2] |
N. Li, Y. Huang, F. Du, X.B. He, X. Lin, H.J. Gao, Y.F. Ma, F.F. Li, Y.S. Chen, P.C. Eklund, Nano Lett. 6 (2006) 1141-1145.
DOI URL |
[3] | M. Green, A.T. Tran, X. Chen, Adv. Mater. Interfaces 7 (2020) 20 0 0658. |
[4] |
M. Green, Y. Li, Z. Peng, X. Chen, J. Magn. Magn. Mater. 497 (2020) 165974.
DOI URL |
[5] |
J. Qiu, T.T. Qiu, Carbon 81 (2015) 20-28.
DOI URL |
[6] |
Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Adv. Mater. 27 (2015) 2049-2053.
DOI URL |
[7] |
J.C. Shu, W.Q. Cao, M.S. Cao, Adv. Funct. Mater. 31 (2021) 2100470.
DOI URL |
[8] |
Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang, L. Liu, R. Liu, H. Yang, W. Lu, Carbon 142 (2019) 20-31.
DOI |
[9] |
B. Deng, Z. Xiang, J. Xiong, Z. Liu, L. Yu, W. Lu, Nano-Micro Lett. 12 (2020) 55.
DOI URL |
[10] |
M. Green, A.T.V. Tran, X. Chen, Compos. Sci. Technol. 199 (2020) 108332.
DOI URL |
[11] |
Z. Xiang, J. Xiong, B. Deng, E. Cui, L. Yu, Q. Zeng, K. Pei, R. Che, W. Lu, J. Mater. Chem. C 8 (2020) 2123-2134.
DOI URL |
[12] |
X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei, R. Che, W. Lu, Carbon 157 (2020) 130-139.
DOI URL |
[13] |
M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Jin, Z.L. Hou, J. Yuan, ACS Appl. Mater. Interfaces 4 (2012) 6949-6956.
DOI URL |
[14] |
M.M. Lu, M.S. Cao, Y.H. Chen, W.Q. Cao, J. Liu, H.L. Shi, D.Q. Zhang, W.Z. Wang, J. Yuan, ACS Appl. Mater. Interfaces 7 (2015) 19408-19415.
DOI URL |
[15] |
N. Li, G.W. Huang, Y.Q. Li, H.M. Xiao, Q.P. Feng, N. Hu, S.Y. Fu, ACS Appl. Mater. Interfaces 9 (2017) 2973-2983.
DOI URL |
[16] |
R.W. Shu, G.Y. Zhang, X. Wang, X. Gao, M. Wang, Y. Gan, J.J. Shi, J. He, Chem. Eng. J. 337 (2018) 242-255.
DOI URL |
[17] |
L. Wang, X.F. Yu, X. Li, J. Zhang, M. Wang, R.C. Che, Carbon 155 (2019) 298-308.
DOI |
[18] |
R. Yang, P.M. Reddy, C. Chang, P. Chen, J. Chen, C. Chang, Chem. Eng. J. 285 (2016) 497-507.
DOI URL |
[19] |
N. Yang, Z.X. Luo, G.R. Zhu, S.C. Chen, X.L. Wang, G. Wu, Y.Z. Wang, ACS Appl. Mater. Interfaces 11 (2019) 35987-35998.
DOI URL |
[20] |
S.K. Singh, M.J. Akhtar, K.K. Kar, ACS Appl. Mater. Interfaces 10 (2018) 24816-24828.
DOI URL |
[21] |
Y. Zhou, J. Miao, Y. Shen, A. Xie, App. Surf. Sci. 453 (2018) 83-92.
DOI URL |
[22] |
J. Xu, X. Zhang, H.R. Yuan, S. Zhang, C.L. Zhu, X.T. Zhang, Y.J. Chen, Carbon 159 (2020) 357-365.
DOI URL |
[23] |
I. Arief, S. Biswas, S. Bose, ACS Appl. Mater. Interfaces 9 (2017) 19202-19214.
DOI URL |
[24] |
X.C. Zhang, X. Zhang, H.R. Yuan, K.Y. Li, Q.Y. Ouyang, C.L. Zhu, S. Zhang, Y.J. Chen, Chem. Eng. J. 383 (2020) 123208.
DOI URL |
[25] | X. Zhang, J. Xu, X.Y. Liu, S. Zhang, H.R. Yuan, C.L. Zhu, X.T. Zhang, Y.J. Chen, Carbon 155 (2019) 232-242. |
[26] |
R.W. Shu, W.J. Li, X. Zhou, D.D. Tian, G.Y. Zhang, Y. Gan, J.J. Shi, J. He, J. Alloy. Compd. 743 (2018) 163-174.
DOI URL |
[27] | J. Feng, Y. Hou, Y. Wang, L. Li, ACS Appl. Mater. Interfaces 16 (2017) 14103-14111. |
[28] |
N. Zhang, Y. Huang, M. Wang, J. Colloid Interface Sci. 530 (2018) 212-222.
DOI URL |
[29] |
Y. Xiong, H. Luo, Y. Nie, F. Chen, W.Y. Dai, X. Wang, Y.Z. Cheng, R.Z. Gong, J. Alloy. Compd. 802 (2019) 364-372.
DOI |
[30] |
R. Guo, Y.C. Fan, L.J. Wang, W. Jiang, Carbon 169 (2020) 214-224.
DOI URL |
[31] | N. Chen, J.T. Jiang, C.Y. Xu, Y. Yuan, Y.X. Gong, L. Zhen, ACS Appl. Mater. Inter- faces 9 (2017) 21933-21941. |
[32] |
J.N. Ma, B. Quan, W. Liu, X.H. Liang, Y.A. Zhang, D.R. Li, Y. Cheng, G.B. Ji, J. Alloy. Compd. 709 (2017) 796-801.
DOI URL |
[33] |
J.Y. Dong, R. Ullal, J. Han, S.H. Wei, X. Ouyang, J.Z. Dong, W. Gao, J. Mater. Chem. A 3 (2015) 5285-5288.
DOI URL |
[34] | B.A. Zhao, X.Q. Guo, W.Y. Zhao, J.S. Deng, G. Shao, B.B. Fan, Z.Y. Bai, R. Zhang, ACS Appl. Mater. Interfaces 42 (2016) 28917-28925. |
[35] |
B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao, L. Liu, X.G. Huang, Z.J. Tian, G.B. Ji, Nano Res. 14 (2021) 1495-1501.
DOI URL |
[36] |
Z. Zhang, J. Tan, W. Gu, H. Zhao, J. Zheng, B. Zhang, G. Ji, Chem. Eng. J. 395 (2020) 125190.
DOI URL |
[37] | Y.Y. Wang, C. Xie, D.D. Liu, X.B. Huang, J. Huo, Y. Wang, ACS Appl. Mater. Inter- faces 8 (2016) 18652-18657. |
[38] |
B. Zhang, C.H. Xiao, S.M. Xie, J. Liang, X. Chen, Y.H. Tang, Chem. Mater. 28 (2016) 6934-6941.
DOI URL |
[39] |
X. Zhou, Z. Jia, X. Zhang, B. Wang, W. Wu, X. Liu, B. Xu, G. Wu, J. Mater. Sci. Technol. 87 (2021) 120-132.
DOI URL |
[40] |
M. Li, T.T. Liu, X.J. Bo, M. Zhou, L.P. Guo, J. Mater. Chem. A 5 (2017) 5413-5425.
DOI URL |
[41] |
J. Xu, L.N. Liu, X.C. Zhang, B. Li, C.L. Zhu, S.L. Chou, Y.J. Chen, Chem. Eng. J. 425 (2021) 131700.
DOI URL |
[42] |
Y. Qing, H. Nan, F. Luo, W. Zhou, RSC Adv. 7 (2017) 27755-27761.
DOI URL |
[43] |
X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu, T. Li, J. Mater. Sci. Technol. 72 (2021) 93-103.
DOI URL |
[44] |
H. Wu, T. Yang, Y. Du, L. Shen, G.W. Ho, Adv. Mater. 30 (2018) 1804341.
DOI URL |
[45] |
B. Quan, X. Liang, G. Ji, J. Lv, S. Dai, G. Xu, Y. Du, Carbon 129 (2018) 310-320.
DOI URL |
[46] |
W. Gu, X. Cui, J. Zheng, J. Yu, Y. Zhao, G. Ji, J. Mater. Sci. Technol. 67 (2021) 265-272.
DOI URL |
[47] |
Y. Liu, N. Fu, G. Zhang, W. Lu, L. Zhou, H. Huang, J. Mater. Chem. A 4 (2016) 15049-15056.
DOI URL |
[48] |
F. Cao, F. Yan, J. Xu, C. Zhu, L. Qi, C. Li, Y. Chen, Carbon 174 (2021) 79-89 N Y.
DOI URL |
[49] |
Y.L. Duan, Z.H. Xiao, X.Y. Yan, Z.F. Gao, Y.S. Tang, L.Q. Hou, Q. Li, G.Q. Ning, Y.F. Li, ACS Appl. Mater. Interfaces 10 (2018) 40078-40087.
DOI URL |
[50] |
H.J. Wei, X.W. Yin, X. Li, M.H. Li, X.L. Dang, L.T. Zhang, L.F. Cheng, Carbon 147 (2019) 276-283.
DOI URL |
[51] |
N. Li, G.W. Huang, H.M. Xiao, Q.P. Feng, S.Y. Fu, Carbon 144 (2019) 216-227.
DOI URL |
[52] |
J.T. Feng, Y.H. Hou, Y.C. Wang, L.C. Li, ACS Appl. Mater. Interfaces 9 (2017) 14103-14111.
DOI URL |
[53] |
D. Guo, H.R. Yuan, X.C. Wang, C.L. Zhu, Y.J. Chen, ACS Appl. Mater. Interfaces 12 (2020) 9628-9636.
DOI URL |
[54] |
X. Zhang, X.C. Zhang, D.T. Wang, H.R. Yuan, S. Zhang, C.L. Zhu, X.T. Zhang, Y.J. Chen, J. Mater. Chem. C 7 (2019) 11868-11878.
DOI |
[55] |
M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Small 14 (2018) 1800987.
DOI URL |
[56] |
P. He, M.S. Cao, J.C. Shu, Y.Z. Cai, X.X. Wang, Q.L. Zhao, J. Yuan, ACS Appl. Mater. Interfaces 11 (2019) 12535-12543.
DOI URL |
[57] | S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 220 (2005) 567-570. |
[58] | J.P. Perdew, P. Ziesche, H. Eschrig, Electronic Structure of Solids '91 (eds.), Akademie-Verlag, Berlin, 1991. |
[59] |
J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244-13249.
PMID |
[60] |
H.R. Yuan, B. Li, C.L Zhu, Y. Xie, Y.Y. Jiang, Y.J. Chen, Appl. Phys. Lett. 116 (2020) 153101.
DOI URL |
[61] |
J. Zhang, Y. Zhao, C. Chen, Y.C. Huang, C.L. Dong, C.J. Chen, R.S. Liu, C.Y. Wang, K. Yan, Y.D. Li, J. Am. Chem. Soc. 141 (2019) 20118-20126.
DOI URL |
[62] |
J. Frenkel, J. Doefman, Nature 126 (1930) 274-275.
DOI URL |
[63] |
Y. Natio, K. Suetake, IEEE Trans. Microwave Theory Tech. 19 (1971) 65-72.
DOI URL |
[64] |
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon 48 (2010) 788-796.
DOI URL |
[1] | Fengyi He, Cheng Tang, Yadong Liu, Haitao Li, Aijun Du, Haijiao Zhang. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 101-109. |
[2] | Yingzhi Jiao, Siyao Cheng, Fan Wu, Jiaoyan Shi, Aming Xie, Xufei Zhu, Wei Dong. Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 100(0): 206-215. |
[3] | Fei Pan, Lei Cai, Yanyan Dong, Xiaojie Zhu, Yuyang Shi, Wei Lu. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 101(0): 85-94. |
[4] | Chenxi Wang, Zirui Jia, Shuangqiao He, Jixi Zhou, Shuo Zhang, Mengli Tian, Bingbing Wang, Guanglei Wu. Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation [J]. J. Mater. Sci. Technol., 2022, 108(0): 236-243. |
[5] | Tong Gao, Zhengyu Zhang, Yixing Li, Yujuan Song, Huawei Rong, Xuefeng Zhang. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 108(0): 37-45. |
[6] | Jun He, Shengtao Gao, Yuanchun Zhang, Xingzhao Zhang, Hanxu Li. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 104(0): 98-108. |
[7] | Aleksandra Krajcer, Joanna Klara, Wojciech Horak, Joanna Lewandowska-Łańcucka. Bioactive injectable composites based on insulin-functionalized silica particles reinforced polymeric hydrogels for potential applications in bone tissue engineering [J]. J. Mater. Sci. Technol., 2022, 105(0): 153-163. |
[8] | Jing Tian, Yi Yang, Tiantian Xue, Guojie Chao, Wei Fan, Tianxi Liu. Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy [J]. J. Mater. Sci. Technol., 2022, 105(0): 194-202. |
[9] | Fan Wang, Weihua Gu, Jiabin Chen, Qianqian Huang, Mingyang Han, Gehuan Wang, Guangbin Ji. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption [J]. J. Mater. Sci. Technol., 2022, 105(0): 92-100. |
[10] | Rui Guo, Qi Zheng, Lianjun Wang, Yuchi Fan, Wan Jiang. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 108-117. |
[11] | Daniel González-Muñoz, Almudena Gómez-Avilés, Carmen B. Molina, Jorge Bedia, Carolina Belver, Jose Alemán, Silvia Cabrera. Anchoring of 10-phenylphenothiazine to mesoporous silica materials: A water compatible organic photocatalyst for the degradation of pollutants [J]. J. Mater. Sci. Technol., 2022, 103(0): 134-143. |
[12] | Yue Liu, Xuehua Liu, Xinyu E, Bingbing Wang, Zirui Jia, Qingguo Chi, Guanglei Wu. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103(0): 157-164. |
[13] | Xinfeng Zhou, Zirui Jia, Xingxue Zhang, Bingbing Wang, Wei Wu, Xuehua Liu, Binghui Xu, Guanglei Wu. Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth [J]. J. Mater. Sci. Technol., 2021, 87(0): 120-132. |
[14] | Weiming Zhang, Biao Zhao, Na Ni, Huimin Xiang, Fu-Zhi Dai, Shijiang Wu, Yanchun Zhou. High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 155-166. |
[15] | Tianqi Hou, Zirui Jia, Ailing Feng, Zehua Zhou, Xuehua Liu, Hualiang Lv, Guanglei Wu. Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity [J]. J. Mater. Sci. Technol., 2021, 68(0): 61-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||