J. Mater. Sci. Technol. ›› 2022, Vol. 106: 108-117.DOI: 10.1016/j.jmst.2021.07.046
• Research Article • Previous Articles Next Articles
Rui Guoa, Qi Zhenga,c,*(), Lianjun Wanga,c,*(
), Yuchi Fana,b, Wan Jianga,b,c
Received:
2021-07-01
Revised:
2021-07-23
Accepted:
2021-07-28
Published:
2022-04-20
Online:
2021-10-06
Contact:
Qi Zheng,Lianjun Wang
About author:
wanglj@dhu.edu.cn (L. Wang).Rui Guo, Qi Zheng, Lianjun Wang, Yuchi Fan, Wan Jiang. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption[J]. J. Mater. Sci. Technol., 2022, 106: 108-117.
Fig. 1. (A) Schematic illustration of the preparation process of 3D porous N-doped Ni@SiO2/graphene network (Ni@SiO2/NGN). (B) SEM image, (C) TEM image, (D) HRTEM image, (E) STEM-HAADF, (F) elemental mapping and (G) EDS spectrum of Ni@SiO2/NGN composite.
Fig. 2. (A) XRD patterns of GN, Ni/GN, Ni@SiO2/GN, and Ni@SiO2/NGN. (B) Raman spectra of GN, Ni/GN, Ni@SiO2/GN, and Ni@SiO2/NGN. (C) TGA and DTA profiles of Ni/GN. (D) XPS survey curves of Ni/GN, Ni@SiO2/GN, and Ni@SiO2/NGN.
Fig. 3. 3D RL curves for (A) GN, (B) Ni/GN, (C) Ni@SiO2/GN, and (D)Ni@SiO2/NGN composites. The 2D reflection loss values curves versus frequency and thickness of (E) Ni@SiO2/GN and (F) Ni@SiO2/NGN.
Sample | Matrix | Filler loading (%) | Optimal RLmin (dB) | Frequency (GHz) | Thickness (mm) | The corresponding EAB (range, GHz) | Refs. |
---|---|---|---|---|---|---|---|
Porous carbon nanosheets | paraffin | 20 | - 53.7 | 15 | 1.8 | 5.3 (12.7-18) | [ |
Ni/porous carbon | paraffin | 15 | - 52 | 13.94 | 1.7 | 4.8 (12.6-17.4) | [ |
Porous carbons | paraffin | 20 | - 12.68 | 15 | 3 | 0.82 (13.13-13.95); 0.78 (14.56-15.34) | [ |
CoNi/N-doped C foam | paraffin | 35 | - 56 | 17.8 | 1.7 | 3.7 (14.3-18) | [ |
SiC@C | paraffin | 50 | - 50 | 12 | 2.8 | 8 (8.2-16.2) | [ |
N-doped RGO foam | Paraffin | 5 | - 53.9 | 7.48 | 3.5 | 3.4 (5.36-8.66) | [ |
Ni@N-doped graphene | paraffin | / | - 45 | 8.63 | 4 | 5.32 (6.08-11.4) | [ |
Fe3O4@C nanorings | paraffin | 25 | - 61.54 | 16.9 | 1.5 | 2.89 (15.11-18) | [ |
Co@C | paraffin | 70 | - 68.7 | 10.6 | 1.65 | 3.45 (8.77-12.22) | [ |
Ni@SiO2/NGN | paraffin | 15 | - 71.13 | 13.76 | 2.46 | 7.04 (10.96-18) | This work |
Table 1. Comparison of EMW absorption of typical carbonaceous materials.
Sample | Matrix | Filler loading (%) | Optimal RLmin (dB) | Frequency (GHz) | Thickness (mm) | The corresponding EAB (range, GHz) | Refs. |
---|---|---|---|---|---|---|---|
Porous carbon nanosheets | paraffin | 20 | - 53.7 | 15 | 1.8 | 5.3 (12.7-18) | [ |
Ni/porous carbon | paraffin | 15 | - 52 | 13.94 | 1.7 | 4.8 (12.6-17.4) | [ |
Porous carbons | paraffin | 20 | - 12.68 | 15 | 3 | 0.82 (13.13-13.95); 0.78 (14.56-15.34) | [ |
CoNi/N-doped C foam | paraffin | 35 | - 56 | 17.8 | 1.7 | 3.7 (14.3-18) | [ |
SiC@C | paraffin | 50 | - 50 | 12 | 2.8 | 8 (8.2-16.2) | [ |
N-doped RGO foam | Paraffin | 5 | - 53.9 | 7.48 | 3.5 | 3.4 (5.36-8.66) | [ |
Ni@N-doped graphene | paraffin | / | - 45 | 8.63 | 4 | 5.32 (6.08-11.4) | [ |
Fe3O4@C nanorings | paraffin | 25 | - 61.54 | 16.9 | 1.5 | 2.89 (15.11-18) | [ |
Co@C | paraffin | 70 | - 68.7 | 10.6 | 1.65 | 3.45 (8.77-12.22) | [ |
Ni@SiO2/NGN | paraffin | 15 | - 71.13 | 13.76 | 2.46 | 7.04 (10.96-18) | This work |
Fig. 4. The EM parameters of (A) GN, (B) Ni/GN, (C) Ni@SiO2/GN, and (D) Ni@SiO2/NGN composites. Frequency dependence of εc″ and εp″ of (E) GN, (F) Ni/GN, (G) Ni@SiO2/GN, and (H) Ni@SiO2/NGN (ε″ = εp″ + εc″). Cole-Cole curve of (I) GN, (J) Ni/GN, (K) Ni@SiO2/GN, and (L) Ni@SiO2/NGN.
Fig. 5. Electromagnetic parameters of GN, Ni/GN, Ni@SiO2/GN, and Ni@SiO2/NGN: (A) dielectric loss tangent tanδε and magnetic loss tangent tanδμ, (B) attenuation constant versus frequency. Contour map of the values of Zin of (C) GN, (D) Ni/GN, (E) Ni@SiO2/GN, and (F) Ni@SiO2/NGN.
[1] |
J. Ma, W. Li, Y. Fan, J. Yang, Q. Yang, J. Wang, W. Luo, W. Zhou, N. Nomura, L. Wang, W. Jiang, ACS Appl. Mater. Interfaces 11 (2019) 46386-46396.
DOI URL |
[2] |
J. Tao, J. Zhou, Z. Yao, Z. Jiao, B. Wei, R. Tan, Z. Li, Carbon 172 (2021) 542-555 N. Y..
DOI URL |
[3] |
S. Wang, D. Li, Y. Zhou, L. Jiang, ACS Nano 14 (2020) 8634-8645.
DOI URL |
[4] |
Z. Fan, D. Wang, Y. Yuan, Y. Wang, Z. Cheng, Y. Liu, Z. Xie, Chem. Eng. J. 381 (2020) 122696.
DOI URL |
[5] |
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang, M.G. Ma, F. Chen, ACS Nano 12 (2018) 4583-4593.
DOI URL |
[6] |
L. Wang, H. Qiu, P. Song, Y. Zhang, Y. Lu, C. Liang, J. Kong, L. Chen, J. Gu, Compos. Part A Appl. Sci. Manuf. 123 (2019) 293-300.
DOI URL |
[7] |
L. Wang, H. Qiu, C. Liang, P. Song, Y. Han, Y. Han, J. Gu, J. Kong, D. Pan, Z. Guo, Carbon 141 (2019) 506-514.
DOI |
[8] | B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao, L. Liu, X. Huang, Z. Tian, G. Ji, Nano Res. (2021) 1495-1501. |
[9] | R. Shu, Z. Wan, J. Zhang, Y. Wu, Y. Liu, J. Shi, M. Zheng, ACS Appl. Mater. Inter-faces 12 (2020) 4689-4698. |
[10] |
H. Chen, W. Ma, Z. Huang, Y. Zhang, Y. Huang, Y. Chen, Adv. Opt. Mater. 7 (2019) 1801318.
DOI URL |
[11] |
X. Li, X. Yin, C. Song, M. Han, H. Xu, W. Duan, L. Cheng, L. Zhang, Adv. Funct. Mater. 28 (2018) 1803938.
DOI URL |
[12] | M. Han, X. Yin, X. Li, B. Anasori, L. Zhang, L. Cheng, Y. Gogotsi, ACS Appl. Mater. Interfaces 9 (2017) 20 038-20 045. |
[13] | X. Li, W. You, L. Wang, J. Liu, Z. Wu, K. Pei, Y. Li, R. Che, ACS Appl. Mater. Interfaces 11 (2019) 44536-44544. |
[14] |
H. Lv, Y. Guo, Z. Yang, Y. Cheng, L.P. Wang, B. Zhang, Y. Zhao, Z.J. Xu, G. Ji, J. Mater. Chem. C 5 (2017) 491-512.
DOI URL |
[15] |
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Adv. Mater. 27 (12) (2015) 2049-2053.
DOI URL |
[16] |
F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou, Compos. Part B Eng. 137 (2018) 260-277.
DOI URL |
[17] |
B. Quan, X. Liang, G. Ji, J. Lv, S. Dai, G. Xu, Y. Du, Carbon 129 (2018) 310-320 N. Y..
DOI URL |
[18] |
C. Liang, Z. Wang, ACS Appl. Mater. Interfaces 9 (2017) 40690-40696.
DOI URL |
[19] |
Z. Yu, X. Lv, K. Mao, Y. Yang, A. Liu, J. Adv. Ceram. 9 (2020) 617-628.
DOI URL |
[20] |
X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang, X. Liang, Q. Zhou, H. Liu, S. Cui, J. Adv. Ceram. 8 (2019) 479-488.
DOI URL |
[21] |
R. Guo, Y. Fan, L. Wang, W. Jiang, Carbon 169 (2020) 214-224 N. Y..
DOI URL |
[22] |
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, Adv. Mater. 28 (2016) 486.
DOI URL |
[23] |
H. Lv, X. Liang, Y. Cheng, H. Zhang, D. Tang, B. Zhang, G. Ji, Y. Du, ACS Appl. Mater. Interfaces 7 (2015) 4744-4750.
DOI URL |
[24] |
L. Yang, H. Lv, M. Li, Y. Zhang, J. Liu, Z. Yang, Chem. Eng. J. 392 (2020) 123666.
DOI URL |
[25] |
M. Han, X. Yin, L. Kong, M. Li, W. Duan, L. Zhang, L. Cheng, J. Mater. Chem. A 2 (2014) 16403-16409.
DOI URL |
[26] |
X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei, R. Che, W. Lu, Carbon 157 (2020) 130-139 N. Y..
DOI URL |
[27] |
Y. Wang, X. Gao, L. Zhang, X. Wu, Q. Wang, C. Luo, G. Wu, Appl. Surf. Sci. 480 (2019) 830-838.
DOI |
[28] | D. Li, H. Liao, H. Kikuchi, T. Liu, ACS Appl. Mater. Interfaces 9 (2017) 44704-44714. |
[29] |
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16 (2004) 401-405.
DOI URL |
[30] |
L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou, Y. Feng, J. Ma, Y. Wang, R. Zhang, C. Liu, ACS Appl. Mater. Interfaces 11 (2019) 25399-25409.
DOI URL |
[31] |
P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia, Z. Guang, Chem. Eng. J. 368 (2019) 285-298.
DOI URL |
[32] |
P. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang, J. Luo, ACS Appl. Mater. Interfaces 11 (2019) 25624-25635.
DOI URL |
[33] |
H. Lv, Y. Li, Z. Jia, L. Wang, X. Guo, B. Zhao, R. Zhang, Compos. Part B Eng. 196 (2020) 108122.
DOI URL |
[34] |
B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei, W. Zheng, Carbon 102 (2016) 154-160 N. Y..
DOI URL |
[35] |
Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu, C. Luo, J. Kong, Q. Shao, N. Wang, Z. Guo, X. Liu, Carbon 139 (2018) 1126-1135 N. Y..
DOI URL |
[36] |
F. Wu, A. Xie, M. Sun, Y. Wang, M. Wang, J. Mater. Chem. A 3 (2015) 14358-14369.
DOI URL |
[37] |
J. Song, X. Guo, J. Zhang, Y. Chen, C. Zhang, L. Luo, F. Wang, G. Wang, J. Mater. Chem. A 7 (2019) 6507-6513.
DOI URL |
[38] |
S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu, S. Hong, Z.Z. Yu, ACS Nano 12 (2018) 11193-11202.
DOI PMID |
[39] |
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang, H.B. Zhang, X. Zhou, C. Liu, C. Shen, X. Xie, ACS Nano 15 (2021) 6622-6632.
DOI URL |
[40] |
H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, Carbon 142 (2019) 245-253 N. Y..
DOI URL |
[41] |
W. Yang, R. Li, B. Jiang, T. Wang, L. Hou, Z. Li, Z. Liu, F. Yang, Y. Li, Carbon 166 (2020) 218-226 N. Y..
DOI URL |
[42] |
Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie, J. Wang, M. Su, L. Li, ACS Appl. Mater. Interfaces 10 (2018) 11108-11115.
DOI URL |
[43] |
J. Zhou, J. Qin, N. Zhao, C. Shi, E.Z. Liu, F. He, J. Li, C. He, J. Mater. Chem. A 4 (2016) 8734-8741.
DOI URL |
[44] |
X. Ren, D. Ai, C. Zhan, R. Lv, F. Kang, Z.H. Huang, Electrochim. Acta 318 (2019) 730-736.
DOI URL |
[45] |
X. Zhang, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li, W. Bacsa, N. Zhao, C. He, Nanoscale 9 (2017) 11929-11938.
DOI URL |
[46] |
X. Zhang, C. Shi, E. Liu, N. Zhao, C. He, Mater. Sci. Eng. A 762 (2019) 138063.
DOI URL |
[47] |
Z. Zhang, J. Tan, W. Gu, H. Zhao, J. Zheng, B. Zhang, G. Ji, Chem. Eng. J. 395 (2020) 125190.
DOI URL |
[48] |
B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie, R. Zhang, J. Mater. Chem. A 3 (2015) 10345-10352.
DOI URL |
[49] |
W. Gu, X. Cui, J. Zheng, J. Yu, Y. Zhao, G. Ji, J. Mater. Sci. Technol. 67 (2021) 265-272.
DOI URL |
[50] |
X.G. Liu, B. Li, D.Y. Geng, W.B. Cui, F. Yang, Z.G. Xie, D.J. Kang, Z.D. Zhang, Carbon 47 (2009) 470-474 N. Y..
DOI URL |
[51] | B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding, R. Zhang, R. Che, Small 16 (2020) 2003502. |
[52] |
B. Zhao, X. Guo, W. Zhao, J. Deng, B. Fan, G. Shao, Z. Bai, R. Zhang, Nano Res. 10 (2017) 331-343.
DOI URL |
[53] |
B. Zhao, X. Guo, W. Zhao, J. Deng, G. Shao, B. Fan, Z. Bai, R. Zhang, ACS Appl. Mater. Interfaces 8 (2016) 28917-28925.
DOI URL |
[54] |
H. Yuan, F. Yan, C. Li, C. Zhu, X. Zhang, Y. Chen, ACS Appl. Mater. Interfaces 10 (2018) 1399-1407.
DOI URL |
[55] |
P. Nie, X. Liu, R. Fu, Y. Wu, J. Jiang, H. Dou, X. Zhang, ACS Energy Lett. 2 (2017) 1279-1287.
DOI URL |
[56] |
B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang, G. Ji, Y. Guo, L. Zheng, Z.J. Xu, Adv. Funct. Mater. 29 (2019) 1901236.
DOI URL |
[57] |
P.A. Miles, W.B. Westphal, A. Von Hippel, Rev. Mod. Phys. 29 (1957) 279-307.
DOI URL |
[58] |
W. Li, J. Yang, Z. Wu, J. Wang, B. Li, S. Feng, Y. Deng, F. Zhang, D. Zhao, J. Am. Chem. Soc. 134 (2012) 11864-11867.
DOI URL |
[59] |
J. Yan, Y. Huang, C. Chen, X. Liu, H. Liu, Carbon 152 (2019) 545-555 N. Y..
DOI URL |
[60] |
D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Carbon 111 (2017) 722-732 N Y.
DOI URL |
[61] | C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. Xue, J. Ma, H. Zhao, X. Han, ACS Appl. Mater. Interfaces 7 (2015) 20 090-20 099. |
[62] |
F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang, X. Yin, Y. Zhou, H. Tao, Y. Liu, L. Cheng, L. Zhang, H. Li, Adv. Funct. Mater. 28 (2018) 1707205.
DOI URL |
[63] |
J. Liu, W.Q. Cao, H.B. Jin, J. Yuan, D.Q. Zhang, M.S. Cao, J. Mater. Chem. C 3 (2015) 4670-4677.
DOI URL |
[64] |
C. Song, X. Yin, M. Han, X. Li, Z. Hou, L. Zhang, L. Cheng, Carbon 116 (2017) 50-58 N. Y..
DOI URL |
[65] |
J. Feng, F. Pu, Z. Li, X. Li, X. Hu, J. Bai, Carbon 104 (2016) 214-225 N. Y..
DOI URL |
[66] |
Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun, Y. Lan, M. He, Z. Ren, X. Zheng, Carbon 115 (2017) 493-502.
DOI URL |
[67] |
J. Feng, Y. Zong, Y. Sun, Y. Zhang, X. Yang, G. Long, Y. Wang, X. Li, X. Zheng, Chem. Eng. J. 345 (2018) 441-451.
DOI URL |
[68] |
X. Gao, Y. Wang, Q. Wang, X. Wu, W. Zhang, C. Luo, J. Magn. Magn. Mater. 486 (2019) 165251.
DOI URL |
[69] |
X.X. Wang, T. Ma, J.C. Shu, M.S. Cao, Chem. Eng. J. 332 (2018) 321-330.
DOI URL |
[1] | Yue Liu, Xuehua Liu, Xinyu E, Bingbing Wang, Zirui Jia, Qingguo Chi, Guanglei Wu. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103(0): 157-164. |
[2] | Fan Wang, Weihua Gu, Jiabin Chen, Qianqian Huang, Mingyang Han, Gehuan Wang, Guangbin Ji. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption [J]. J. Mater. Sci. Technol., 2022, 105(0): 92-100. |
[3] | Yingzhi Jiao, Siyao Cheng, Fan Wu, Jiaoyan Shi, Aming Xie, Xufei Zhu, Wei Dong. Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 100(0): 206-215. |
[4] | Fei Pan, Lei Cai, Yanyan Dong, Xiaojie Zhu, Yuyang Shi, Wei Lu. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 101(0): 85-94. |
[5] | Jun He, Shengtao Gao, Yuanchun Zhang, Xingzhao Zhang, Hanxu Li. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 104(0): 98-108. |
[6] | Huipeng Lv, Chen Wu, Faxiang Qin, Huaxin Peng, Mi Yan. Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO2 nanosheets for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 90(0): 1-8. |
[7] | Tianqi Hou, Zirui Jia, Ailing Feng, Zehua Zhou, Xuehua Liu, Hualiang Lv, Guanglei Wu. Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity [J]. J. Mater. Sci. Technol., 2021, 68(0): 61-69. |
[8] | Xinfeng Zhou, Zirui Jia, Xingxue Zhang, Bingbing Wang, Wei Wu, Xuehua Liu, Binghui Xu, Guanglei Wu. Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth [J]. J. Mater. Sci. Technol., 2021, 87(0): 120-132. |
[9] | Weiming Zhang, Biao Zhao, Na Ni, Huimin Xiang, Fu-Zhi Dai, Shijiang Wu, Yanchun Zhou. High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 155-166. |
[10] | Jiabin Chen, Jing Zheng, Qianqian Huang, Gehuan Wang, Guangbin Ji. Carbon fibers@Co-ZIFs derivations composites as highly efficient electromagnetic wave absorbers [J]. J. Mater. Sci. Technol., 2021, 94(0): 239-246. |
[11] | Di Lan, Zehao Zhao, Zhenguo Gao, Kaichang Kou, Hongjing Wu. Novel magnetic silicate composite for lightweight and efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 92(0): 51-59. |
[12] | Lin Xiao-Qiang, Wang Wen-Dong, Lü Qiu-Feng, Jin Yan-Qiao, Lin Qilang, Liu Rui. Nitrogen-doped graphene/carbon nanohorns composite as a high-performance supercapacitor electrode [J]. J. Mater. Sci. Technol., 2017, 33(11): 1339-1345. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||