J. Mater. Sci. Technol. ›› 2022, Vol. 109: 114-128.DOI: 10.1016/j.jmst.2021.08.077
• Research Article • Previous Articles Next Articles
Xubing Weia,b, Shaomiao Shia, Chuangming Ninga, Zhibin Lua,*(), Guangan Zhanga,b,*(
)
Received:
2021-01-13
Revised:
2021-07-11
Accepted:
2021-08-09
Published:
2022-05-20
Online:
2021-11-06
Contact:
Zhibin Lu,Guangan Zhang
About author:
gazhang@licp.cas.cn (G. Zhang).Xubing Wei, Shaomiao Shi, Chuangming Ning, Zhibin Lu, Guangan Zhang. Si-DLC films deposited by a novel method equipped with a co-potential auxiliary cathode for anti-corrosion and anti-wear application[J]. J. Mater. Sci. Technol., 2022, 109: 114-128.
Processing | Gas flow (sccm) | Deposition voltage (kV) | Vacuum degree (Pa) | Deposition time (min) | ||
---|---|---|---|---|---|---|
Ar | SiH4 | C2H2 | ||||
Empty Cell | ||||||
Cleaning | 200 | 6 | 1.5 | 20 | ||
Adhesion | 150 | 50 | 15 | 12 | 25 | |
SiX-DLC | 100 | 50 | 150 | 0.8 | 5.9-6.0 | 4.5 |
SiY-DLC | 100 | 50 | 50 | 3.9-4.0 | 1.5 |
Table 1. Deposition parameters of Si-DLC film by the novel deposition method by equipping a co-potential auxiliary cathode.
Processing | Gas flow (sccm) | Deposition voltage (kV) | Vacuum degree (Pa) | Deposition time (min) | ||
---|---|---|---|---|---|---|
Ar | SiH4 | C2H2 | ||||
Empty Cell | ||||||
Cleaning | 200 | 6 | 1.5 | 20 | ||
Adhesion | 150 | 50 | 15 | 12 | 25 | |
SiX-DLC | 100 | 50 | 150 | 0.8 | 5.9-6.0 | 4.5 |
SiY-DLC | 100 | 50 | 50 | 3.9-4.0 | 1.5 |
Fig. 2. Raman spectra (a) of Si-DLC films deposited by a novel deposition method at different region and its G peak wavenumber (b), ID/IG (c) and FWHMG (d).
Fig. 7. Load-depth curves (a, b), ER% (c), hardness, elastic modulus (d), H/E and H3/E2 (e) of HSS M2 and Si-DLC film deposited on the HSS M2 by a novel deposition method.
Sample | Region 1 | Region 2 | Region 3 | Region 4 | Region 5 |
---|---|---|---|---|---|
Si-DLC/HSS M2 | 12.2 N | 10.5 N | 10.1 N | 10.5 N | 9.6 N |
Table 2. Critical load of Si-DLC film on the surface of HSS M2.
Sample | Region 1 | Region 2 | Region 3 | Region 4 | Region 5 |
---|---|---|---|---|---|
Si-DLC/HSS M2 | 12.2 N | 10.5 N | 10.1 N | 10.5 N | 9.6 N |
Fig. 9. OCP as a function of time (a) and potentiodynamic polarization curves (b) of 304SS and Si-DLC film deposited by a novel deposition method in3.5 wt% NaCl solution.
Samples | OCP (V) | Ecorr (V) | jcorr (A cm-2) | βc (V) | βa (V) | Rp (Ω cm2) | P (%) | □2 |
---|---|---|---|---|---|---|---|---|
304SS | -0.269 | -0.266 | 1.98 × 10-6 | 0.26 | 1.01 | 4.53 × 104 | 100 | 1.6 × 10-1 |
Region 1 | 0.108 | -0.165 | 2.14 × 10-8 | 0.16 | 1.06 | 2.82 × 106 | 1.29 | 5.2 × 10-2 |
Region 2 | 0.102 | -0.161 | 2.04 × 10-8 | 0.16 | 0.91 | 2.90 × 106 | 1.20 | 2.6 × 10-2 |
Region 3 | 0.077 | -0.144 | 2.66 × 10-8 | 0.18 | 0.96 | 2.47 × 106 | 1.37 | 4.6 × 10-2 |
Region 4 | 0.087 | -0.152 | 2.44 × 10-8 | 0.16 | 0.78 | 2.36 × 106 | 1.24 | 4.3 × 10-2 |
Region 5 | 0.083 | -0.154 | 4.05 × 10-8 | 0.19 | 0.95 | 1.70 × 106 | 2.04 | 1.9 × 10-2 |
Table 3. Polarization results of 304SS and Si-DLC film at different regions.
Samples | OCP (V) | Ecorr (V) | jcorr (A cm-2) | βc (V) | βa (V) | Rp (Ω cm2) | P (%) | □2 |
---|---|---|---|---|---|---|---|---|
304SS | -0.269 | -0.266 | 1.98 × 10-6 | 0.26 | 1.01 | 4.53 × 104 | 100 | 1.6 × 10-1 |
Region 1 | 0.108 | -0.165 | 2.14 × 10-8 | 0.16 | 1.06 | 2.82 × 106 | 1.29 | 5.2 × 10-2 |
Region 2 | 0.102 | -0.161 | 2.04 × 10-8 | 0.16 | 0.91 | 2.90 × 106 | 1.20 | 2.6 × 10-2 |
Region 3 | 0.077 | -0.144 | 2.66 × 10-8 | 0.18 | 0.96 | 2.47 × 106 | 1.37 | 4.6 × 10-2 |
Region 4 | 0.087 | -0.152 | 2.44 × 10-8 | 0.16 | 0.78 | 2.36 × 106 | 1.24 | 4.3 × 10-2 |
Region 5 | 0.083 | -0.154 | 4.05 × 10-8 | 0.19 | 0.95 | 1.70 × 106 | 2.04 | 1.9 × 10-2 |
Fig. 11. EIS results of 304SS and Si-DLC film at different regions: (a, b) Bode plots, (c) Nyquist; and EC models for substrate (d) and Si-DLC films (e).
Samples | R1 (Ω cm2) | CPE1 | R2 (Ω cm2) | CPE2 | R3 (Ω cm2) | CPE3 | WO | □2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 (F cm-2) | n1 | C2 (F cm-2) | n2 | C3 (F cm-2) | n3 | Rw (Ω cm2) | Cw (F cm-2) | nw | |||||
304SS | 10,900 | 6.42 × 10-5 | 0.85 | — | — | — | — | — | — | — | — | — | 6.91 × 10-2 |
Region 1 | — | — | — | 9717 | 4.59 × 10-8 | 0.65 | 69,549 | 1.33 × 10-7 | 0.87 | 9041 | 0.073 | 0.44 | 1.42 × 10-3 |
Region 2 | — | — | — | 12,074 | 5.98 × 10-8 | 0.62 | 90,280 | 7.96 × 10-8 | 0.87 | 11,736 | 0.080 | 0.44 | 1.41 × 10-3 |
Region 3 | — | — | — | 5956 | 2.26 × 10-8 | 0.71 | 63,092 | 6.21 × 10-7 | 0.66 | 8202 | 0.092 | 0.53 | 2.81 × 10-3 |
Region 4 | — | — | — | 5775 | 2.84 × 10-8 | 0.68 | 65,858 | 5.08 × 10-7 | 0.67 | 8561 | 0.048 | 0.50 | 2.31 × 10-3 |
Region 5 | — | — | — | 5700 | 2.18 × 10-8 | 0.71 | 44,833 | 7.94 × 10-7 | 0.64 | 5828 | 0.065 | 0.52 | 2.34 × 10-3 |
Table 4. Detailed EC parameters obtained by EIS results of 304SS and Si-DLC film at different regions.
Samples | R1 (Ω cm2) | CPE1 | R2 (Ω cm2) | CPE2 | R3 (Ω cm2) | CPE3 | WO | □2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 (F cm-2) | n1 | C2 (F cm-2) | n2 | C3 (F cm-2) | n3 | Rw (Ω cm2) | Cw (F cm-2) | nw | |||||
304SS | 10,900 | 6.42 × 10-5 | 0.85 | — | — | — | — | — | — | — | — | — | 6.91 × 10-2 |
Region 1 | — | — | — | 9717 | 4.59 × 10-8 | 0.65 | 69,549 | 1.33 × 10-7 | 0.87 | 9041 | 0.073 | 0.44 | 1.42 × 10-3 |
Region 2 | — | — | — | 12,074 | 5.98 × 10-8 | 0.62 | 90,280 | 7.96 × 10-8 | 0.87 | 11,736 | 0.080 | 0.44 | 1.41 × 10-3 |
Region 3 | — | — | — | 5956 | 2.26 × 10-8 | 0.71 | 63,092 | 6.21 × 10-7 | 0.66 | 8202 | 0.092 | 0.53 | 2.81 × 10-3 |
Region 4 | — | — | — | 5775 | 2.84 × 10-8 | 0.68 | 65,858 | 5.08 × 10-7 | 0.67 | 8561 | 0.048 | 0.50 | 2.31 × 10-3 |
Region 5 | — | — | — | 5700 | 2.18 × 10-8 | 0.71 | 44,833 | 7.94 × 10-7 | 0.64 | 5828 | 0.065 | 0.52 | 2.34 × 10-3 |
Fig. 12. Friction coefficient curves (a), average friction coefficient (b) and wear rate (c) of Si-DLC films at different region; wear rate (d) of GCr15 steel ball.
Fig. 13. Optical microscope images (a) of Si-DLC films at different regions, HSS M2 and GCr15 steel ball after fiction tests; Raman spectra of GCr15 steel ball worn with Si-DLC film at different region (b).
Samples | Deposition rate (nm/min) | Intrinsic stress (GPa) | Surface roughness (nm) | Hardness (GPa) | Elastic modulus (GPa) | Adhesive strength (N) | Corrosion current density (A cm-2) | Friction coefficient | Wear rate (mm3 N-1 m-1) |
---|---|---|---|---|---|---|---|---|---|
This study | >30 | 0.1-0.3 | 5.8-14.7 | 15-17 | ∼125 | ∼10 | ∼2 × 10-8 | ∼0.05 | 3-4 × 10-7 |
Ref. [ | ∼6 | 298 | 5.3 × 10-6 | 0.17 | 3.4 × 10-6 | ||||
Ref. [ | ∼80 | 0.7-1.5 | 1.1-8.1 × 10-8 | ||||||
Ref. [ | 1.5-1.8 μm (total thickness) | ∼0.15 | 3.2 × 10-7 | ||||||
Ref. [ | 20-25 | >0.8 | 12-22 | 130-200 | |||||
Ref. [ | 1.6-2.5 | 1.5-3 | 6-12 | 100-200 | 6-9.6 | ||||
Ref. [ | ∼7 | 13.8 | 164.6 | 32.8 | 0.09-0.12 | 3.3-4.2 × 10-7 | |||
Ref. [ | 40-58 | 17-21.5 | 141-160 | <0.1 | |||||
Ref. [ | >40 | ∼0.5 | 20-25 |
Table 5. Comparison of Si-DLC deposited by different deposition methods.
Samples | Deposition rate (nm/min) | Intrinsic stress (GPa) | Surface roughness (nm) | Hardness (GPa) | Elastic modulus (GPa) | Adhesive strength (N) | Corrosion current density (A cm-2) | Friction coefficient | Wear rate (mm3 N-1 m-1) |
---|---|---|---|---|---|---|---|---|---|
This study | >30 | 0.1-0.3 | 5.8-14.7 | 15-17 | ∼125 | ∼10 | ∼2 × 10-8 | ∼0.05 | 3-4 × 10-7 |
Ref. [ | ∼6 | 298 | 5.3 × 10-6 | 0.17 | 3.4 × 10-6 | ||||
Ref. [ | ∼80 | 0.7-1.5 | 1.1-8.1 × 10-8 | ||||||
Ref. [ | 1.5-1.8 μm (total thickness) | ∼0.15 | 3.2 × 10-7 | ||||||
Ref. [ | 20-25 | >0.8 | 12-22 | 130-200 | |||||
Ref. [ | 1.6-2.5 | 1.5-3 | 6-12 | 100-200 | 6-9.6 | ||||
Ref. [ | ∼7 | 13.8 | 164.6 | 32.8 | 0.09-0.12 | 3.3-4.2 × 10-7 | |||
Ref. [ | 40-58 | 17-21.5 | 141-160 | <0.1 | |||||
Ref. [ | >40 | ∼0.5 | 20-25 |
[1] |
J. Robertson, Prog. Solid State Chem. 21 (1991) 199-333.
DOI URL |
[2] |
J. Robertson, Mater. Sci. Eng R 37 (2002) 129-281.
DOI URL |
[3] |
X. Xu, P. Guo, X. Zuo, L. Sun, X. Li, K.R. Lee, A. Wang, Surf. Coat. Technol. 402 (2020) 126347.
DOI URL |
[4] |
S. Brown, J. Lengaigne, N. Sharifi, M. Pugh, C. Moreau, A. Dolatabadi, L. Martinu, J.E. Klemberg-Sapieha, Surf. Coat. Technol. 401 (2020) 126249.
DOI URL |
[5] | Y.X. Wu, Y.L. Liu, Y. Liu, B. Zhou, H.J. Hei, Y. Ma, S.W. Yu, Y.C. Wu, Chin. Phys. B 29 (2020) 473-480. (in Chinese) |
[6] | J.H. Sui, W. Cai, L.C. Zhao, J. Mater. Sci. Technol. 22 (2006) 577-580. |
[7] | F. Ma, X. Cai, G. Li, Q.L. Chen, H.T. Ma, J. Mater. Sci. Technol. 18 (2002) 447-450. |
[8] |
M. Evaristo, F. Fernandes, A. Cavaleiro, Coatings 10 (2020) 319.
DOI URL |
[9] |
M.I. Khan, M. Afzal, M. Sabir, M. Iqbal, M.U. Qadri, A. Nazir, Mater. Res. Express 6 (2019) 116447.
DOI URL |
[10] |
S. Saha, A.K. Das, R. Hatada, W. Ensinger, S. Flege, K. Baba, A.K. Meikap, J. Appl. Phys. 126 (2019) 154104.
DOI URL |
[11] |
C.Q. Guo, Z.L. Pei, D. Fan, J. Gong, C. Sun, Diamond Relat. Mater. 60 (2015) 66-74.
DOI URL |
[12] |
T. Guo, C. Kong, X. Li, P. Guo, Z. Wang, A. Wang, Appl. Surf. Sci. 410 (2017) 51-59.
DOI URL |
[13] |
Z.Y. Han, H.K. Li, G.Q. Lin, C.A. Dong, J. Mater. Sci. Technol. 26 (2010) 967-972.
DOI URL |
[14] | J. Du, P. Zhang, J. Mater. Sci. Technol. 23 (2007) 571-573. |
[15] |
C.M. Ning, X.J. Cui, L.L. Shang, Y.J. Zhang, G.A. Zhang, Diamond Relat. Mater. 106 (2020) 107832.
DOI URL |
[16] |
K.D. Koshigan, F. Mangolini, J.B. McClimon, B. Vacher, S. Bec, R.W. Carpick, J. Fontaine, Carbon 93 (2015) 851-860.
DOI URL |
[17] |
B. Khadro, A. Sikora, A.S. Loir, A. Errachid, F. Garrelie, C. Donnet, N. Jaffrez-ic-Renault, Sensors Actuat. B-Chem. 155 (2011) 120-125.
DOI URL |
[18] | H.Y. Zhang, L.X. Liu, Y.L. Wang, H.T. Ma, F.X. Liu, J. Mater. Sci. Technol. 23 (2007) 491-494. |
[19] | A.A. Voevodin, S.D. Walck, J.S. Zabinski, Wear 203 (1997) 516-527. |
[20] |
X.L. Peng, Z.H. Barber, T.W. Clyne, Surf. Coat. Technol. 138 (2001) 23-32.
DOI URL |
[21] |
M.S. Kabir, Z.F. Zhou, Z.H. Xie, P. Munroe, J. Mater. Sci. Technol. 65 (2021) 108-117.
DOI URL |
[22] |
E. Tomasella, C. Meunier, S. Mikhailov, Surf. Coat. Technol. 141 (2001) 286-296.
DOI URL |
[23] |
H.G. Kim, S.H. Ahn, J.G. Kim, S.J. Park, K.R. Lee, Diamond Relat. Mater. 14 (2005) 35-41.
DOI URL |
[24] |
J. Heinrichs, S. Jacobson, Surf. Coat. Technol. 204 (2010) 3606-3613.
DOI URL |
[25] |
T. Shimizu, H. Komiya, T. Watanabe, Y. Teranishi, H. Nagasaka, K. Morikawa, M. Yang, Surf. Coat. Technol. 250 (2014) 44-51.
DOI URL |
[26] | N.W. Khun, A. Neville, I. Kolev, H.Y. Zhao, J. Tribol.-Trans.Asme 138 (2016) 031301. |
[27] | W. Kijaszek, W. Oleszkiewicz, Z. Znamirowski, Mater. Sci.-Poland 36 (2018) 80-85. |
[28] |
L. Yang, Z.D. Wang, S.Y. Zhang, L.Z. Yang, Q. Chen, Chin. Phys. B 18 (2009) 5401-5405.
DOI URL |
[29] |
Y.Q. Pan, Y. Yin, Diamond Relat. Mater. 16 (2007) 220-224.
DOI URL |
[30] |
Q.K. Zhou, P.L. Ke, X.W. Li, Y.S. Zou, A.Y. Wang, Appl. Surf. Sci. 329 (2015) 281-286.
DOI URL |
[31] |
V. Singh, V. Palshin, R.C. Tittsworth, E.I. Meletis, Carbon 44 (2006) 1280-1286.
DOI URL |
[32] |
J. Wang, J. Pu, G. Zhang, L. Wang, ACS Appl. Mater. Interfaces 5 (2013) 5015-5024.
DOI URL |
[33] |
J.F. Archard, J. Appl. Phys. 24 (1953) 981-988.
DOI URL |
[34] |
A.C. Ferrari, J. Robertson, Phys. Rev. B 61 (2000) 14095-14107.
DOI URL |
[35] |
A.C. Ferrari, Diamond Relat. Mater. 11 (2002) 1053-1061.
DOI URL |
[36] |
D. Bociaga, A. Sobczyk-Guzenda, W. Szymanski, A. Jedrzejczak, A. Jastrzebska, A. Olejnik, K. Jastrzebski, Appl. Surf. Sci. 417 (2017) 23-33.
DOI URL |
[37] |
C. Casiraghi, A.C. Ferrari, J. Robertson, Phys. Rev. B 72 (2005) 085401.
DOI URL |
[38] |
L. Chen, J. Wang, L. Shang, Z. Lu, Z. Wu, G. Zhang, Tribol. Int. 133 (2019) 152-159.
DOI |
[39] |
A. Bertoluzza, C. Fagnano, M.A. Morelli, V. Gottardi, M. Guglielmi, J. Non. Cryst. Solids 48 (1982) 117-128.
DOI URL |
[40] |
V. Tucureanu, A. Matei, A.M. Avram, Crit. Rev. Anal. Chem. 46 (2016) 502-520.
DOI URL |
[41] |
J.C. Damasceno, S.S. Camargo, Thin Solid Films 516 (2008) 1890-1897.
DOI URL |
[42] | L.K. Randeniya, A. Bendavid, P.J. Martin, M.S. Amin, E.W. Preston, Diamond Re-lat. Mater. 18 (2009) 1167-1173. |
[43] |
Š. Meškinis, S. Tamulevičius, V. Kopustinskas, M. Andrulevičius, A. Guobienė, R. Gudaitis, I. Liutvinienė, Thin Solid Films 515 (2007) 7615-7618.
DOI URL |
[44] |
N. Kumar, S.A. Barve, S.S. Chopade, R. Kar, N. Chand, S. Dash, A.K. Tyagi, D.S. Patil, Tribol. Int. 84 (2015) 124-131.
DOI URL |
[45] |
T. Takeshita, Y. Kurata, S. Hasegawa, J. Appl. Phys. 71 (1992) 5395-5400.
DOI URL |
[46] |
B.F. Coll, M. Chhowalla, Surf. Coat. Technol. 79 (1-3) (1996) 76-86.
DOI URL |
[47] |
K. Ankit, A. Varade, N.K. Reddy, S. Dhan, M. Chellamalai, N. Balashanmugam, P. Krishna, Diamond Relat. Mater. 78 (2017) 39-43.
DOI URL |
[48] |
D. He, L. Shang, Z. Lu, G. Zhang, L. Wang, Q. Xue, Surf. Coat. Technol. 329 (2017) 11-18.
DOI URL |
[49] |
W.M. Silva, V.J. Trava-Airoldi, Y.W. Chung, Surf. Coat. Technol. 205 (2011) 3703-3707.
DOI URL |
[50] |
W.M. Silva, J.R. Carneiro, V.J. Trava-Airoldi, Diamond Relat. Mater. 42 (2014) 58-63.
DOI URL |
[51] | C. Pan, H. Wang, H. Wang, Q. Chang, H. Wang, J. Wuhan Univ. Technol.-Mater. Sci. Ed. 25 (2010) 991-995. |
[52] |
M. Stern, A.L. Geary, J. Electrochem. Soc. 104 (1957) 56-63.
DOI URL |
[53] |
N. Konkhunthot, P. Photongkam, P. Wongpanya, Appl. Surf. Sci. 469 (2019) 471-486.
DOI URL |
[54] |
D. Batory, A. Jedrzejczak, W. Kaczorowski, L. Kolodziejczyk, B. Burnat, Diamond Relat. Mater. 67 (2016) 1-7.
DOI URL |
[55] |
H. Deng, D. Chen, Y. Wang, Y. Zhou, P. Gao, Diamond Relat. Mater. 110 (2020) 108144.
DOI URL |
[56] |
J. Choi, S. Nakao, J. Kim, M. Ikeyama, T. Kato, Diamond Relat. Mater. 16 (2007) 1361-1364.
DOI URL |
[57] |
M.J. Cui, J.B. Pu, J. Liang, L.P. Wang, G.G. Zhang, Q.J. Xue, RSC Adv 5 (2015) 104829-104840.
DOI URL |
[58] |
M. Metikos-Hukovic, R. Babic, Corros. Sci. 49 (2007) 3570-3579.
DOI URL |
[59] |
H. Nakazawa, S. Miura, K. Nakamura, Y. Nara, Thin Solid Films 654 (2018) 38-48.
DOI URL |
[60] |
I. Tanaka, T. Nakano, H. Kousaka, H. Hashitomi, Surf. Coat. Technol. 332 (2017) 128-134.
DOI URL |
[61] |
W. Yu, J. Wang, W. Huang, L. Cui, L. Wang, Tribol. Int. 146 (2020) 106241.
DOI URL |
[62] |
W. Dai, X. Gao, J. Liu, S.H. Kwon, Q. Wang, Appl. Surf. Sci. 425 (2017) 855-861.
DOI URL |
[63] |
P. Xu, X. Cao, M. Zhang, W. Yue, G. Zhang, Diamond Relat. Mater. 108 (2020) 107977.
DOI URL |
[64] |
C. Chouquet, G. Gerbaud, M. Bardet, S. Barrat, A. Billard, F. Sanchette, C. Ducros, Surf. Coat. Technol. 204 (2010) 1339-1346.
DOI URL |
[65] | J.C. Damasceno, S.S. Camargo, F.L. Freire, R. Carius, Surf. Coat. Technol. 133 (2000) 247-252. |
[1] | Rui Liu, Li Liu, Fuhui Wang. The role of hydrostatic pressure on the metal corrosion in simulated deep-sea environments — a review [J]. J. Mater. Sci. Technol., 2022, 112(0): 230-238. |
[2] | Da-Hai Xia, Cheng-Man Deng, Digby Macdonald, Sina Jamali, Douglas Mills, Jing-Li Luo, Michael G. Strebl, Mehdi Amiri, Weixian Jin, Shizhe Song, Wenbin Hu. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review [J]. J. Mater. Sci. Technol., 2022, 112(0): 151-183. |
[3] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[4] | Suyun Liu, Xuewan Wang, Qi Yin, Xiongzhi Xiang, Xian-Zhu Fu, Xian-Zong Wang, Jing-Li Luo. A facile approach to fabricating graphene/waterborne epoxy coatings with dual functionalities of barrier and corrosion inhibitor [J]. J. Mater. Sci. Technol., 2022, 112(0): 263-276. |
[5] | Bin Wu, Hongliang Ming, Fanjiang Meng, Yifeng Li, Guangqing He, Jianqiu Wang, En-Hou Han. Effects of surface grinding for scratched alloy 690TT tube in PWR nuclear power plant: Microstructure and stress corrosion cracking [J]. J. Mater. Sci. Technol., 2022, 113(0): 229-245. |
[6] | S. Pugal Mani, P. Agilan, M. Kalaiarasan, K. Ravichandran, N. Rajendran, Y. Meng. Effect of multilayer CrN/CrAlN coating on the corrosion and contact resistance behavior of 316L SS bipolar plate for high temperature proton exchange membrane fuel cell [J]. J. Mater. Sci. Technol., 2022, 97(0): 134-146. |
[7] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
[8] | Jing Wu, Meng Li, Chuanchuan Lin, Pengfei Gao, Rui Zhang, Xuan Li, Jixi Zhang, Kaiyong Cai. Moderated crevice corrosion susceptibility of Ti6Al4V implant material due to albumin-corrosion interaction [J]. J. Mater. Sci. Technol., 2022, 109(0): 209-220. |
[9] | Pengfei Zhou, Dong Liu, Yuyun Chen, Mingpeng Chen, Yunxiao Liu, Shi Chen, Chi Tat Kwok, Yuxin Tang, Shuangpeng Wang, Hui Pan. Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst [J]. J. Mater. Sci. Technol., 2022, 109(0): 267-275. |
[10] | Mohammed Arroussi, Qing Jia, Chunguang Bai, Shuyuan Zhang, Jinlong Zhao, Zhizhou Xia, Zhiqiang Zhang, Ke Yang, Rui Yang. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2022, 109(0): 282-296. |
[11] | Jin Ba, Xu Ji, Bin Wang, Peixin Li, Jinghuang Lin, Jian Cao, Junlei Qi. Microstructure design of C/C composites through electrochemical corrosion for brazing to Nb [J]. J. Mater. Sci. Technol., 2022, 104(0): 33-40. |
[12] | Xiaojia Yang, Ying Yang, Meihui Sun, Jinghuan Jia, Xuequn Cheng, Zibo Pei, Qing Li, Di Xu, Kui Xiao, Xiaogang Li. A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology [J]. J. Mater. Sci. Technol., 2022, 104(0): 67-80. |
[13] | Meng Cai, Peng Feng, Han Yan, Yuting Li, Shijie Song, Wen Li, Hao Li, Xiaoqiang Fan, Minhao Zhu. Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection [J]. J. Mater. Sci. Technol., 2022, 116(0): 151-160. |
[14] | Inime Ime Udoh, Hongwei Shi, Enobong Felix Daniel, Jianyang Li, Songhua Gu, Fuchun Liu, En-Hou Han. Active anticorrosion and self-healing coatings: A review with focus on multi-action smart coating strategies [J]. J. Mater. Sci. Technol., 2022, 116(0): 224-237. |
[15] | Yixuan He, Fan Bu, Yuhao Wu, Jianbao Zhang, Dawei Luo, Zhangchi Bian, Qing Zhou, Tie Liu, Qiang Wang, Jun Wang, Haifeng Wang, Jinshan Li, Eric Beaugnon. Liquid state dependent solidification of a Co-B eutectic alloy under a high magnetic field [J]. J. Mater. Sci. Technol., 2022, 116(0): 58-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||