J. Mater. Sci. Technol. ›› 2022, Vol. 109: 129-139.DOI: 10.1016/j.jmst.2021.08.071
• Research Article • Previous Articles Next Articles
Cheng Lia,1, Guanhong Leia,1, Jizhao Liua,b, Awen Liua,c, C.L. Rena,b, Hefei Huanga,b,*()
Received:
2021-06-25
Revised:
2021-08-13
Accepted:
2021-08-15
Published:
2022-05-20
Online:
2021-11-03
Contact:
Hefei Huang
About author:
* E-mail address: huanghefei@sinap.ac.cn (H. Huang).Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy[J]. J. Mater. Sci. Technol., 2022, 109: 129-139.
Milling time | Pristine samplesa | Irradiated samplesb | Corroded samplesc |
---|---|---|---|
2 h | S1 | S1-1 | S1-2 |
4 h | S2 | S2-1 | S2-2 |
8 h | S3 | S3-1 | S3-2 |
Hastelloy N | Hastelloy N | SR | SR |
Table 1. Notation used to identify pristine, He-ion-irradiated, and corroded samples.
Milling time | Pristine samplesa | Irradiated samplesb | Corroded samplesc |
---|---|---|---|
2 h | S1 | S1-1 | S1-2 |
4 h | S2 | S2-1 | S2-2 |
8 h | S3 | S3-1 | S3-2 |
Hastelloy N | Hastelloy N | SR | SR |
Impurity ions | Ni | Mo | Cr | Fe | Mn | Y |
---|---|---|---|---|---|---|
FLiNaK | 6171.9 | 3.1 | 31.6 | 111.3 | 14.6 | - |
FLiNaK after corrosion | 2154.4 | 6.5 | 35.8 | 90.7 | 14.8 | 0.66 |
Table 2. Contents of main impurities (ppm) in the molten salt.
Impurity ions | Ni | Mo | Cr | Fe | Mn | Y |
---|---|---|---|---|---|---|
FLiNaK | 6171.9 | 3.1 | 31.6 | 111.3 | 14.6 | - |
FLiNaK after corrosion | 2154.4 | 6.5 | 35.8 | 90.7 | 14.8 | 0.66 |
Fig. 6. Bright-field TEM micrographs of (a) S1, (b) S2, and (c) S3. (d) EDS mapping of S2. (e) HRTEM image of S2. (f) SAED image of S2. (g) The size distribution of Y2O3 precipitates in samples S1, S2 and S3. (h) The number density of Y2O3 precipitates in samples S1, S2 and S3.
Fig. 9. (a) TEM micrograph of S1-1 covering depths of 0-2500 nm. (b) Under-focus and (c) over-focus images of the area enclosed by the orange box in (a).
Fig. 10. (a), (c), (e) TEM micrographs of He bubbles in the region of 1600-2000 nm in S1-1, S2-1, and S3-1, respectively. (b), (d), (f) are enlarged micrographs of the areas enclosed by orange boxes in (a), (c), (e), respectively.
Fig. 15. (a) Typical region of corroded SR. (b) Enlarged micrograph of Zone A. (c) Enlarged micrograph of Zone B. EDS point analysis results of (d) Zone A and (e) Zone B.
Fig. 16. (a) Typical region of S2-2. (b) Enlarged micrograph of Zone A. (c) Enlarged micrograph of Zone B. EDS point analysis results of (d) Zone A and (e) Zone B.
[1] | GIF-002-00 US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, 2002 December. |
[2] |
D. Leblanc, Nucl. Eng. Des. 240 (2010) 1644-1656.
DOI URL |
[3] |
J. Serp, M. Allibert, O. Benes, S. Delpech, O. Feynberg, D. Heuer, V. Ghetta, D. Hol-comb, V. Ignatiev, J.L. Kloosterman, L. Luzzi, E. Merle-Lucotte, J. Uhlir, R. Yosh-ioka, Z.M. Dai, Prog. Nucl. Energy 77 (2014) 308-319.
DOI URL |
[4] |
G.Y. Zheng, H.L. W, J.P. Wang, S.J. Chen, Y.H. Zhang, Ann. Nucl. Energy 116 (2018) 177-186.
DOI URL |
[5] | X.Y. Chen, C.L. Ren, A.L. Wen, W. Zhang, C.B. Wang, H.F. Huang, Z.W. Chen, P. Huai, Nucl. Sci Tech. 31 (2020) 79. |
[6] | S.J. Zinkle, J.T. Busby, Mater. Today 12 (2009) 12-19. |
[7] |
V. Castro, T. Leguey, M.A. Monge, A. Murioz, R. Pareja, D.R. Amador, J.M. Tor-ralba, M. Victoria, J. Nucl. Mater. 322 (2003) 228-234.
DOI URL |
[8] |
M.K. Miller, K.F. Russell, D.T. Hoelzer, J. Nucl. Mater. 351 (2006) 261-268.
DOI URL |
[9] |
M. Klimiankou, R. Lindau, A. Möslang, J. Nucl. Mater. 367-370 (2007) 173-178.
DOI URL |
[10] |
B. El-Dasher, J. Farmer, J. Ferreira, M. Serrano de Caro, A. Rubenchik, A. Kimura, J. Nucl. Mater. 419 (2011) 15-23.
DOI URL |
[11] | C. Yang, H.F. Huang, M. De Los Reyes, L. Yan, X.T. Zhou, T. Xia, D.L. Zhang, Acta Metall. Sin Engl. Lett. 28 (2015) 809-816. |
[12] |
H.F. Huang, C. Yang, M. De Los Reyes, Y.F. Zhou, L. Yan, X.T. Zhou, J. Mater. Sci. Technol. 31 (2015) 923-929.
DOI URL |
[13] |
C. Yang, H.F. Huang, X.L. Zhou, Z.J. Li, X.T. Zhou, T. Xia, D.L. Zhang, J. Nucl. Mater. 467 (2015) 635-643.
DOI URL |
[14] |
X.L. Zhou, H.F Huang, R.B. Xie, C. Yang, Z.J. Li, H.J. Xu, J. Nucl. Mater. 467 (2015) 848-854.
DOI URL |
[15] |
C. Yang, T. Wei, G.L. Zhu, D. Shu, W.Z. Zhu, A.P. Dong, B.D. Sun, M.H. Ionescu, Scripta. Mater. 189 (2020) 1-6.
DOI URL |
[16] |
H.F. Huang, W. Zhang, M. De Los Reyes, X.L. Zhou, C. Yang, R. Xie, X.T. Zhou, P. Huai, H.J. Xu, Mater. Des. 90 (2016) 359-363.
DOI URL |
[17] |
C. Yang, O. Muransky, H.L. Zhu, I. Karatchevtseva, R. Holmes, M. Avdeev, Y.Y. Jia, H.F. Huang, X.T. Zhou, Corros. Sci. 143 (2018) 240-248.
DOI URL |
[18] |
Z.Y. Li, Z. Lu, R. Xie, C.Y. Lu, C.M. Liu, Mater. Sci. Eng. A 660 (2016) 52-60.
DOI URL |
[19] |
J. Uhlir, J. Nucl. Mater. 360 (2007) 6-11.
DOI URL |
[20] |
C. Yang, O. Muránsky, H.L. Zhu, G.J. Thorogood, M. Avdeev, H.F. Huang, X.T. Zhou, Materials 10 (2017) 389.
DOI URL |
[21] |
J.F. Ziegler, J.P. Biersack, U. Littmark, Nucl. Instrum. Methods Phys. Res., Sect. B 268 (2010) 1818-1823.
DOI URL |
[22] | Standard Practice for Neutron Radiation Damage Simulation By Charged-Par-ticle Irradiation, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2009 Vol. 12.02. |
[23] | H.E. McCoy, B. McNabb, Postirradiation Examination of Materials from the MSRE, ORNL-TM-4174, USA: ORNL, 1972. |
[24] | S.J. Zinkle, J.T. Busby, Mater. Today 12 (2009) 12-19. |
[25] |
C. Yang, O. Muránsky, H.L. Zhu, G.J. Thorogood, H.F. Huang, X.T. Zhou, Mater. Des. 113 (2017) 223-231.
DOI URL |
[26] |
V. de Castro, T. Leguey, A. Muñoz, M.A. Monge, P. Fernández, A.M. Lancha, R. Pareja, J. Nucl. Mater. 367-370 (2007) 196-201.
DOI URL |
[27] |
Y.Q. Zhu, H. Peng, C. Li, C. Yu, R.B. Xie, G.H. Lei, Q. Lei, X.T. Zhou, Mater. Lett. 252 (2019) 223-226.
DOI URL |
[28] |
H.F. Huang, J. Gao, B. Radiguet, R.D. Liu, J.J. Li, G.H. Lei, Q. Huang, M. Liu, R.B. Xie, J. Nucl. Mater. 499 (2018) 431-439.
DOI URL |
[29] |
C. Ronchi, J. Nucl. Mater. 148 (1987) 316-323.
DOI URL |
[30] |
Z.B. Zhu, H.F. Huang, J.Z. Liu, Z.Y. Zhu, J. Nucl. Mater. 541 (2020) 152419.
DOI URL |
[31] |
N. Li, M. Nastasi, A. Misra, Int. J. Plast. 32-33 (2012) 1-16.
DOI URL |
[32] | A.W. Liu, H.F. Huang, J.Z. Liu, Z.B. Zhu, Y. Li, Mater. Today Commun. 26 (2021) 10201. |
[33] |
X.X. Ye, H. Ai, Z. Guo, H.F. Huang, L. Jiang, J.Q. Wang, Z.J. Li, X.T. Zhou, Corros. Sci. 106 (2016) 249-259.
DOI URL |
[34] |
L.C. Olson, J.W. Ambrosek, K. Sridharan, M.H. Anderson, T.R. Allen, J. Fluorine Chem. 130 (2009) 67-73.
DOI URL |
[35] |
F.Y. Ouyang, C.H. Chang, B.C. You, T.K. Yeh, J.J. Kai, J. Nucl. Mater. 437 (2013) 201-207.
DOI URL |
[36] |
H. Ai, M. Shen, H. Sun, K.P. Dolan, C.Y. Wang, M. Ge, H.Q. Yin, X.Y. Li, H. Peng, N. Li, L.D. Xie, Corros. Sci. 150 (2019) 175-182.
DOI URL |
[37] |
G.H. Lei, C. Li, Z. Jiang, H.F. Huang, Corros. Sci. 165 (2020) 108408.
DOI URL |
[1] | Byungchul Kang, Taeyeong Kong, Ho Jin Ryu, Soon Hyung Hong. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process [J]. J. Mater. Sci. Technol., 2021, 69(0): 32-41. |
[2] | Alejandra Rodriguez-Contreras, Miquel Punset, José A. Calero, Francisco JavierGil, Elisa Ruperez, José María Manero. Powder metallurgy with space holder for porous titanium implants: A review [J]. J. Mater. Sci. Technol., 2021, 76(0): 129-149. |
[3] | Wei Xu, Xin Lu, Jingjing Tian, Chao Huang, Miao Chen, Yu Yan, Luning Wang, Xuanhui Qu, Cuie Wen. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications [J]. J. Mater. Sci. Technol., 2020, 41(0): 191-198. |
[4] | Dongjun Wang, Hao Li, Wei Zheng. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering [J]. J. Mater. Sci. Technol., 2020, 37(0): 46-54. |
[5] | C. Garcia-Cabezon, C. Garcia-Hernandez, M.L. Rodriguez-Mendez, F. Martin-Pedrosa. A new strategy for corrosion protection of porous stainless steel using polypyrrole films [J]. J. Mater. Sci. Technol., 2020, 37(0): 85-95. |
[6] | Kun Yu, Xianwu Shi, Zhenguo Jiang, Chaowen Li, Shuangjian Chen, Wang Tao, Xingtai Zhou, Zhijun Li. Effects of solution treatment on grain coarsening and hardness of laser welds in UNS N10003 alloy contained different carbon content [J]. J. Mater. Sci. Technol., 2019, 35(8): 1719-1726. |
[7] | Y. Jiao, L.J. Huang, S.L. Wei, H.X. Peng, Q. An, S. Jiang, L. Geng. Constructing two-scale network microstructure with nano-Ti5Si3 for superhigh creep resistance [J]. J. Mater. Sci. Technol., 2019, 35(8): 1532-1542. |
[8] | Jinhu Zhang, Jinmin Liu, Dongsheng Xu, Jie Wu, Lei Xu, Rui Yang. Characterization of the prior particle boundaries in a powder metallurgy Ti2AlNb alloy [J]. J. Mater. Sci. Technol., 2019, 35(11): 2513-2525. |
[9] | Yao X., Zhang Z., Zheng Y.F., Kong C., Quadir M.Z., Liang J.M., Chen Y.H., Munroe P., Zhang D.L.. Effects of SiC Nanoparticle Content on the Microstructure and Tensile Mechanical Properties of Ultrafine Grained AA6063-SiCnp Nanocomposites Fabricated by Powder Metallurgy [J]. J. Mater. Sci. Technol., 2017, 33(9): 1023-1030. |
[10] | Hou Legan, Li Bingcheng, Wu Ruizhi, Cui Lin, Ji Peng, Long Ruiying, Zhang Jinghua, Li Xinlin, Dong Anping, Sun Baode. Microstructure and mechanical properties at elevated temperature of Mg-Al-Ni alloys prepared through powder metallurgy [J]. J. Mater. Sci. Technol., 2017, 33(9): 947-953. |
[11] | Kubásek Ji?í, Dvorsky Drahomír, ?avojsky Miroslav, Vojtěch Dalibor, Beronská Nad'a, Fousová Michaela. Superior Properties of Mg-4Y-3RE-Zr Alloy Prepared by Powder Metallurgy [J]. J. Mater. Sci. Technol., 2017, 33(7): 652-660. |
[12] | Chen Jie, Bao Chonggao, Chen Wenhui, Zhang Li, Liu Jinling. Mechanical Properties and Fracture Behavior of Mg-Al/AlN Composites with Different Particle Contents [J]. J. Mater. Sci. Technol., 2017, 33(7): 668-674. |
[13] | Yang Donghui, Chen Jianqing, Chen Weiping, Wang Lei, Wang Hui, Jiang Jinghua, Ma Aibin. Fabrication of cellular Zn-Mg alloy foam by gas release reaction via powder metallurgical approach [J]. J. Mater. Sci. Technol., 2017, 33(10): 1141-1146. |
[14] | Sun Xianglong, Han Yuanfei, Cao Sanchen, Qiu Peikun, Lu Weijie. Rapid in-situ reaction synthesis of novel TiC and carbon nanotubes reinforced titanium matrix composites [J]. J. Mater. Sci. Technol., 2017, 33(10): 1165-1171. |
[15] | Wang Zhiguo,Li Chuanpeng,Wang Huiyuan,Zhu Xian,Wu Min,Li Jiehua,Jiang Qichuan. Aging Behavior of Nano-SiC/2014Al Composite Fabricated by Powder Metallurgy and Hot Extrusion Techniques [J]. J. Mater. Sci. Technol., 2016, 32(10): 1008-1012. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||