J. Mater. Sci. Technol. ›› 2022, Vol. 109: 140-146.DOI: 10.1016/j.jmst.2021.08.074
• Research Article • Previous Articles Next Articles
Yan-Cai Gaoa,c, Chong Wangb, Chun-Xia Zhanga,c, Hong-Wei Lia,c,*(
), Yuqing Wua,c
Received:2021-04-12
Revised:2021-08-19
Accepted:2021-08-22
Published:2022-05-20
Online:2021-11-02
Contact:
Hong-Wei Li
About author:* E-mail address: lihongwei@jlu.edu.cn (H.-W. Li).Yan-Cai Gao, Chong Wang, Chun-Xia Zhang, Hong-Wei Li, Yuqing Wu. Controlled preparation and application of glutathione capped gold and platinum alloy nanoclusters with high peroxidase-like activity[J]. J. Mater. Sci. Technol., 2022, 109: 140-146.
Fig. 1. (A) Time-dependent UV-visible absorption spectra of TMB and H2O2 in the presence of Au-PtNCs1 (10 μg·mL-1). (B) Typical absorbance changes of 1.0 mM TMB at 652 nm in the absence (green) and presence of 10 μg·mL-1 Au-PtNCs1 (Black), 30 mM H2O2 (Blue), and both of 10 μg·mL-1 AuNCs and 30 mM H2O2 (Red), respectively. (C) Typical absorbance changes of 1.0 mM TMB at 652 nm in the presence of different amount of Au-PtNCs1 (0, 5, 10, 15, 20, 30 μg·mL-1). (D) The corresponding catalytic activity changes of C. (The concentrations of TMB and H2O2 are 1.0 and 30 mM, respectively).
Fig. 3. (A) UV-visible absorption spectra of Au-PtNCs in aqueous solution. (B) Typical TEM image of Au-PtNCs with the strong catalytic ability (Inset is the enlarged image and the statistic size distributions). (C, D) The XPS spectra of gold and platinum in Au-PtNCs, respectively.
| No. | Detected (μM) | Added (μM) | TMB- Au-PtNCs2 system | Potassium permanganate titration | ||||
|---|---|---|---|---|---|---|---|---|
| Found (μM) | RSD (n = 3,%) | Recovery (%) | Found (μM) | RSD (n = 3,%) | Recovery (%) | |||
| 1 | < 0.10 | 30 | 29.3 ± 0.41 | 1.4 | 97.67 | 28.8 ± 0.98 | 3.4 | 96.0 |
| 2 | < 0.10 | 60 | 60.8 ± 1.40 | 2.3 | 101.33 | 58.1 ± 2.50 | 4.3 | 98.83 |
| 3 | < 0.10 | 80 | 81.1 ± 1.46 | 1.8 | 101.38 | 78.4 ± 3.06 | 3.9 | 98.0 |
| 4 | < 0.10 | 30 | 30.4 ± 0.64 | 2.1 | 101.33 | 28.9 ± 1.21 | 4.2 | 96.33 |
| 5 | < 0.10 | 60 | 60.9 ± 1.34 | 2.2 | 101.50 | 58.4 ± 1.87 | 3.2 | 97.33 |
| 6 | < 0.10 | 80 | 79.1 ± 1.90 | 2.4 | 98.88 | 78.7 ± 1.42 | 1.8 | 98.38 |
Table 1. Parameters for the application of Au-PtNCs2 (10 μg·mL-1) and TMB (1.0 mM) and potassium permanganate titration to the determination of H2O2 in milk (No. 1-3) and contact lens solutions (No. 4-6).
| No. | Detected (μM) | Added (μM) | TMB- Au-PtNCs2 system | Potassium permanganate titration | ||||
|---|---|---|---|---|---|---|---|---|
| Found (μM) | RSD (n = 3,%) | Recovery (%) | Found (μM) | RSD (n = 3,%) | Recovery (%) | |||
| 1 | < 0.10 | 30 | 29.3 ± 0.41 | 1.4 | 97.67 | 28.8 ± 0.98 | 3.4 | 96.0 |
| 2 | < 0.10 | 60 | 60.8 ± 1.40 | 2.3 | 101.33 | 58.1 ± 2.50 | 4.3 | 98.83 |
| 3 | < 0.10 | 80 | 81.1 ± 1.46 | 1.8 | 101.38 | 78.4 ± 3.06 | 3.9 | 98.0 |
| 4 | < 0.10 | 30 | 30.4 ± 0.64 | 2.1 | 101.33 | 28.9 ± 1.21 | 4.2 | 96.33 |
| 5 | < 0.10 | 60 | 60.9 ± 1.34 | 2.2 | 101.50 | 58.4 ± 1.87 | 3.2 | 97.33 |
| 6 | < 0.10 | 80 | 79.1 ± 1.90 | 2.4 | 98.88 | 78.7 ± 1.42 | 1.8 | 98.38 |
| [1] |
M. Zhou, T. Higaki, Y. Li, C. Zeng, Q. Li, M.Y. Sfeir, R. Jin, J. Am. Chem. Soc. 141 (2019) 19754-19764.
DOI URL |
| [2] |
L. Shang, J. Xu, G.U. Nienhaus, Nano Today 28 (2019) 100767.
DOI URL |
| [3] |
I. Chakraborty, T. Pradeep, Chem. Rev. 117 (2017) 8208-8271.
DOI PMID |
| [4] |
Q. Yao, Z. Wu, Z. Liu, Y. Lin, X. Yuan, J. Xie, Chem. Sci. 12 (2021) 99-127.
DOI URL |
| [5] |
Q. Tang, G. Hu, V. Fung, D. Jiang, Acc. Chem. Res. 51 (2018) 2793-2802.
DOI URL |
| [6] |
J. Fang, B. Zhang, Q. Yao, Y. Yang, J. Xie, N. Yan, Coord. Chem. Rev. 322 (2016) 1-29.
DOI URL |
| [7] |
X. Liu, D. Astruc, Adv. Mater. 29 (2017) 1605305.
DOI URL |
| [8] |
H.L. Liu, F. Nosheen, X. Wang, Chem. Soc. Rev. 44 (2015) 3056-3078.
DOI URL |
| [9] |
J. Quinson, M. Inaba, S. Neumann, A.A. Swane, J. Bucher, S.B. Simonsen, L. Kuhn, J. Kirkensgaard, K. Jensen, M. Oezaslan, S. Kunz, M. Arenz, ACS Catal 8 (2018) 6627-6635.
DOI URL |
| [10] |
F. Mostafa, J. Croy, L. Ono, L. Li, J. Yang, A. Frenkel, B. Cuenya, J. Am. Chem. Soc. 132 (2010) 15714-15719.
DOI PMID |
| [11] |
Y. Ding, H. Liu, L.N. Gao, M. Fu, X. Luo, X. Zhang, Q. Liu, R.C. Zeng, J. Alloys Compd. 785 (2019) 1189-1197.
DOI URL |
| [12] |
R. Jin, K. Nobusada, Nano Res 7 (2014) 285-300.
DOI URL |
| [13] |
H. Liao, G. Liu, Y. Liu, R. Li, W. Fu, L. Hu, Chem. Commun. 53 (2017) 10160-10163.
DOI URL |
| [14] |
H. Qian, D.E. Jiang, G. Li, C. Gayathri, A. Das, R.R. Gil, R. Jin, J. Am. Chem. Soc. 134 (2012) 16159-16162.
DOI URL |
| [15] |
N. Sui, S. Li, Y. Wang, Q. Zhang, S. Liu, Q. Bai, H. Xiao, M. Liu, L. Wang, W.W. Yu, Microchim. Acta 186 (2019) 186.
DOI URL |
| [16] |
B.Y. Xia, H.B. Wu, X. Wang, X.W. Lou, J. Am. Chem. Soc. 134 (2012) 13934-13937.
DOI URL |
| [17] |
C. Zheng, A.X. Zheng, B. Liu, X.L. Zhang, Y. He, J. Li, H.H. Yang, G. Chen, Chem. Commun. 50 (2014) 13103-13106.
DOI URL |
| [18] |
J. Feng, P. Huang, F.Y. Wu, Analyst 142 (2017) 4106-4115.
DOI URL |
| [19] |
W. Hong, J. Wang, E. Wang, Nano Res 8 (2015) 2308-2316.
DOI URL |
| [20] |
S. Guo, S. Zhang, D. Su, S. Sun, J. Am. Chem. Soc. 135 (2013) 13879-13884.
DOI URL |
| [21] |
Y.C. Gao, C. Wang, C.X. Zhang, H.W. Li, Y. Wu, Microchim. Acta 188 (2020) 50.
DOI URL |
| [22] |
Y. Wu, Y. Ma, G. Xu, F. Wei, Y. Ma, Q. Song, X. Wang, T. Tang, Y. Song, M. Shi, X. Xu, Q. Hu, Sens. Actuators, B 249 (2017) 195-202.
DOI URL |
| [23] |
X.X. Wang, Q. Wu, Z. Shan, Q.M. Huang, Biosens. Bioelectron. 26 (2011) 3614-3619.
DOI URL |
| [24] |
M. Li, J. Yang, Y. Ou, Y. Shi, L. Liu, C. Sun, H. Zheng, Y. Long, Talanta 182 (2018) 422-427.
DOI URL |
| [25] |
L. Jin, Z. Meng, Y. Zhang, S. Cai, Z. Zhang, C. Li, L. Shang, Y. Shen, ACS Appl. Mater. Interfaces 9 (2017) 10027-10033.
DOI URL |
| [26] |
L. Chen, N. Wang, X. Wang, S. Ai, Microchim. Acta 180 (2013) 1517-1522.
DOI URL |
| [27] |
L. Hu, Y. Yuan, L. Zhang, J. Zhao, S. Majeed, G. Xu, Anal. Chim. Acta 762 (2013) 83-86.
DOI URL |
| [28] |
J. Liu, H.W. Li, W.X. Wang, Y. Wu, J. Mater. Chem. B 5 (2017) 3550-3556.
DOI URL |
| [29] |
Y. Yue, T.Y. Liu, H.W. Li, Z. Liu, Y. Wu, Nanoscale 4 (2012) 2251-2254.
DOI URL |
| [30] |
Y. Yu, Q. Zhang, Q. Yao, J. Xie, J.Y. Lee, Acc. Chem. Res. 47 (2014) 3530-3540.
DOI URL |
| [31] |
H.W. Li, Y. Yue, T.Y. Liu, D. Li, Y. Wu, J. Phys. Chem. C 117 (2013) 16159-16165.
DOI URL |
| [32] |
J.Y. Yang, T. Yang, X.Y. Wang, M.L. Chen, Y.L. Yu, J.H. Wang, Anal. Chem. 90 (2018) 6945-6951.
DOI URL |
| [33] |
G. Pramanik, J. Humpolickova, J. Valenta, P. Kundu, S. Bals, P. Bour, M. Dracin-sky, P. Cigler, Nanoscale 10 (2018) 3792-3798.
DOI PMID |
| [34] |
C.J. Yu, T.H. Chen, J.Y. Jiang, W.L. Tseng, Nanoscale 6 (2014) 9618-9624.
DOI URL |
| [35] |
X. Guével, V. Trouillet, C. Jung, M. Schneider, J. Phys. Chem. C 116 (2012) 6047-6051.
DOI URL |
| [36] |
J. Yang, J. Lee, T.C. Deivaraj, H.P. Too, Langmuir 19 (2003) 10361-10365.
DOI URL |
| [37] |
Y. Lin, X. Chen, Y. Lin, Q. Zhou, D. Tang, Microchim. Acta 182 (2015) 1803-1809.
DOI URL |
| [1] | Jingqi Chen, Xianlei Hu, Haitao Gao, Shu Yan, Shoudong Chen, Xianghua Liu. Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances [J]. J. Mater. Sci. Technol., 2022, 99(0): 9-17. |
| [2] | Yong Liu, Xinqing Han, Qing Huang, Miguel L. Crespillo, Peng Liu, Eva Zarkadoula, Xuelin Wang. Structural damage response of lanthanum and yttrium aluminate crystals to nuclear collisions and electronic excitation: Threshold assessment of irradiation damage [J]. J. Mater. Sci. Technol., 2021, 90(0): 95-107. |
| [3] | Dongfeng Ma, Shengcheng Mao, Jiao Teng, Xinliang Wang, Xiaochen Li, Jin Ning, Zhipeng Li, Qing Zhang, Zhiyong Tian, Menglong Wang, Ze Zhang, Xiaodong Han. In-situ revealing the degradation mechanisms of Pt film over 1000°C [J]. J. Mater. Sci. Technol., 2021, 95(0): 10-19. |
| [4] | Wei Chen, Lei You, Guanglin Xia, Xuebin Yu. A balance between catalysis and nanoconfinement towards enhanced hydrogen storage performance of NaAlH4 [J]. J. Mater. Sci. Technol., 2021, 79(0): 205-211. |
| [5] | Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres [J]. J. Mater. Sci. Technol., 2020, 48(0): 105-113. |
| [6] | Lu Zhang, Yuanyuan Cui, Fengli Yang, Quan Zhang, Juhua Zhang, Mengting Cao, Wei-Lin Dai. Electroless-hydrothermal construction of nickel bridged nickel sulfide@mesoporous carbon nitride hybrids for highly efficient noble metal-free photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 45(0): 176-186. |
| [7] | Su Jian, Fang Changqing, Yang Mannan, Cheng Youliang, Wang Zhen, Huang Zhigang, You Caiyin. A controllable soft-templating approach to synthesize mesoporous carbon microspheres derived from d-xylose via hydrothermal method [J]. J. Mater. Sci. Technol., 2020, 38(0): 183-188. |
| [8] | Xiaoyi Shen, Hongmei Shao, Yan Liu, Yuchun Zhai. Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore [J]. J. Mater. Sci. Technol., 2020, 51(0): 1-7. |
| [9] | Yanmei Zheng, Yuanyuan Liu, Xinli Guo, Zhongtao Chen, Weijie Zhang, Yixuan Wang, Xuan Tang, Yao Zhang, Yuhong Zhao. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants [J]. J. Mater. Sci. Technol., 2020, 41(0): 117-126. |
| [10] | Meng Fanming, Fan Zhenghua, Zhang Cheng, Hu Youdi, Guan Tao, Li Aixia. Morphology-Controlled Synthesis of CeO2 Microstructures and Their Room Temperature Ferromagnetism [J]. J. Mater. Sci. Technol., 2017, 33(5): 444-451. |
| [11] | Zhu Yanan,Zheng Ganhong,Dai Zhenxiang,Zhang Lingyun,Ma Yongqing. Photocatalytic and Luminescent Properties of SrMoO4 Phosphors Prepared via Hydrothermal Method with Different Stirring Speeds [J]. J. Mater. Sci. Technol., 2017, 33(1): 23-29. |
| [12] | Hiroaki Onoda, Yurie Sato. Temperature Dependence and P/Zn Ratio in Phosphoric Acid Treatment of Zinc Oxide [J]. J. Mater. Sci. Technol., 2016, 32(5): 432-436. |
| [13] | Theerthagiri J.,Senthil R.A.,Buraidah M.H.,Madhavan J.,Arof A.K.. Synthesis of α-Mo2C by Carburization of α-MoO3 Nanowires and Its Electrocatalytic Activity towards Tri-iodide Reduction for Dye-Sensitized Solar Cells [J]. J. Mater. Sci. Technol., 2016, 32(12): 1339-1344. |
| [14] | Yongguang Wang, Xiangyu Wang, Bo Sun, Shaochun Tang, Xiangkang Meng. Concentration-dependent Morphology Control of Pt-coated-Ag Nanowires and Effects of Bimetallic Interfaces on Catalytic Activity [J]. J. Mater. Sci. Technol., 2016, 32(1): 41-47. |
| [15] | Yanhong Yin, Chun, an Ma, Ziping Wu, Man Zhao, Litao Chen, Youqun Chu. Synthesis and Characterization of Sphere-like Pt Nanoparticles Supported on DWCNT/WO3 Nanorods with Electrocatalytic Activity [J]. J. Mater. Sci. Technol., 2015, 31(9): 888-894. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
