J. Mater. Sci. Technol. ›› 2021, Vol. 95: 10-19.DOI: 10.1016/j.jmst.2021.03.064
• Research Article • Previous Articles Next Articles
Dongfeng Maa, Shengcheng Maoa,*(), Jiao Tengb, Xinliang Wangc, Xiaochen Lia, Jin Ningd, Zhipeng Lia, Qing Zhanga, Zhiyong Tiana, Menglong Wanga, Ze Zhanga,e, Xiaodong Hana,*(
)
Received:
2020-12-15
Revised:
2021-03-19
Accepted:
2021-03-22
Published:
2021-12-30
Online:
2021-05-24
Contact:
Shengcheng Mao,Xiaodong Han
About author:
xdhan@bjut.edu.cn (X. Han).Dongfeng Ma, Shengcheng Mao, Jiao Teng, Xinliang Wang, Xiaochen Li, Jin Ning, Zhipeng Li, Qing Zhang, Zhiyong Tian, Menglong Wang, Ze Zhang, Xiaodong Han. In-situ revealing the degradation mechanisms of Pt film over 1000°C[J]. J. Mater. Sci. Technol., 2021, 95: 10-19.
Fig. 1. A microheater fabricated with a type-II Pt film as the resistor. (a) SEM image of the microheater. (b) Cross-sectional sketch of the microheater. The operating area of the microheater was designed as a multilayer suspended film structure that was ~700 nm thick.
System | Composition | Thickness (nm) | Substrate Temperature (°C) | Pressure (mTorr) | Gas mixture | Power (WDC) |
---|---|---|---|---|---|---|
I | Pt | 240 | 450 | 4 | Argon only | 200 |
II | PtOx | 60 | 450 | 10 | Ar/O2=3/7 | 150 |
Pt | 180 | 4 | Argon only | 200 |
Table 1 Sputtering parameters for the two types of Pt films.
System | Composition | Thickness (nm) | Substrate Temperature (°C) | Pressure (mTorr) | Gas mixture | Power (WDC) |
---|---|---|---|---|---|---|
I | Pt | 240 | 450 | 4 | Argon only | 200 |
II | PtOx | 60 | 450 | 10 | Ar/O2=3/7 | 150 |
Pt | 180 | 4 | Argon only | 200 |
Fig. 2. Microstructures of the one-step and two-step sputtered Pt films. (a) SEM image of the as-deposited type-I Pt film. Black arrows indicate the faceted grains formed during deposition. (b) and (c) SEM images of the type-I Pt film annealed at 1000 °C for 2 h. (d) SEM images of the as-deposited type-II Pt film. (e) and (f) SEM images of the type-II Pt film annealed at 1000 °C for 2 h. (g) Mean grain sizes of the Pt films annealed at different temperatures. (h) XRD patterns of the Pt films.
Anneal temperature (°C) | d111 (Å) | |
---|---|---|
Type-I | 450 | 2.2581 |
1000 | 2.2554 | |
Type-II | 450 | 2.2614 |
1000 | 2.2583 |
Table 2 Lattice spacing d111 of the Pt films.
Anneal temperature (°C) | d111 (Å) | |
---|---|---|
Type-I | 450 | 2.2581 |
1000 | 2.2554 | |
Type-II | 450 | 2.2614 |
1000 | 2.2583 |
Fig. 3. Degradation test of the SiNx-passivated two-step Pt film in SEM. (a) SEM image of the Pt film after the voltage was increased to a maximum of 2.7 V for 12 min. (b) Enlarged SEM image of the Pt film region outline by the red box in (a). The failure position of the Pt film is indicated in the figure. (c) Normalized resistance changes in the Pt film as a function of heating temperature obtained by Raman spectroscopy. (d) Finite element analysis of the microheater temperature distribution under a constant voltage of 2.7 V. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).
Fig. 4. In situ BF-STEM study of the degradation behaviors in the SiNx-passivated Pt film at different temperatures. (a) and (g) Images of the film prior to the degradation test. Initial GB voids exist in the Pt film. (b-f) Images of the film degraded at different temperatures. (h) Low-magnification image of the failure region after being held at 1080 °C for 40 min.
Fig. 5. Cross-sectional (S)TEM characterization of the Pt film after in situ degradation in SEM. (a) HAADF-STEM image of the bulging region. (b) HAADF-STEM image of an unbulging region. (c) and (d) Bright-field TEM images of a GB void and an IG void. (e) HAADF-STEM image of an IG void.
Fig. 6. The facet features of IG voids. (a) BF-STEM image of voids in the Pt film. (b) Equilibrium shape of a faceted Pt crystal, as calculated with Wulffmaker. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
Pt | SiNx | SiO2 | Si | |
---|---|---|---|---|
Density (g cm-3) | 21.09 | 3.1 | 2.2 | 2.33 |
Thermal conductivity (W/(m K)) | 71.4 | 3.2 | 1.1 | 148 |
Modulus (GPa) | 174 | 325 | 85 | 168 |
Poisson's ratio | 0.39 | 0.25 | 0.17 | 0.23 |
Thermal expansion (°C-1) | 8.8E-6 | 3.3E-6 | 0.5E-6 | 2.6E-6 |
Table 3 Material parameters for coupled thermal-mechanical FEA simulation.
Pt | SiNx | SiO2 | Si | |
---|---|---|---|---|
Density (g cm-3) | 21.09 | 3.1 | 2.2 | 2.33 |
Thermal conductivity (W/(m K)) | 71.4 | 3.2 | 1.1 | 148 |
Modulus (GPa) | 174 | 325 | 85 | 168 |
Poisson's ratio | 0.39 | 0.25 | 0.17 | 0.23 |
Thermal expansion (°C-1) | 8.8E-6 | 3.3E-6 | 0.5E-6 | 2.6E-6 |
Fig. 7. Strain and stress distributions in the microheater simulated with a two-dimensional cross-sectional model. (a) Elastic strain ε distribution in the microheater. (b) Normal stress σxx distribution in the microheater. (c) Sketch of the stress/strain states in different layers.
Fig. 8. BF-TEM image of a region near the edge of the degraded Pt film, viewed from the Z direction, with the evolution plot of σxx along the X-axis overlaid.
Variable | Details | Value |
---|---|---|
Activation energy (cal/mole) | Bulk | 34 Tm |
GB | 7.8 Tm | |
Dislocation | 25 Tm | |
Pre-exponent (cm2/s) | Bulk | 0.5 |
GB | 0.3 | |
Dislocation | 2.1 | |
GB width/Grain size (nm) | tGB/D | 1/411 |
Area of a dislocation core (nm2) | ac | 2.42E-15 |
Table 4 Parameters used for calculating the effective diffusivities in Pt as functions of temperature [63,65].
Variable | Details | Value |
---|---|---|
Activation energy (cal/mole) | Bulk | 34 Tm |
GB | 7.8 Tm | |
Dislocation | 25 Tm | |
Pre-exponent (cm2/s) | Bulk | 0.5 |
GB | 0.3 | |
Dislocation | 2.1 | |
GB width/Grain size (nm) | tGB/D | 1/411 |
Area of a dislocation core (nm2) | ac | 2.42E-15 |
Fig. 10. BF-STEM images of Pt films at the same temperature (1080 °C) under different loading methods. (a) Thermal conduction heating. (b) Self-Joule heating.
[1] |
E. Çiftyürek, K. Sabolsky, E.M. Sabolsky, Sensors Actuators B Chem. 181 (2013) 702-714.
DOI URL |
[2] |
E. Çiftyürek, C.D. McMillen, K. Sabolsky, E.M. Sabolsky, Sensors Actuators B Chem. 207 (2015) 206-215.
DOI URL |
[3] | M.P. da Cunha, A. Maskay, R. Lad, D. Frankel, S. Moulzolf, M. Call, G. Bernhardt, in: Proceedings of the IEEE International Ultrasonics Symposium (IUS), IEEE, 2015, pp. 1-4. |
[4] |
A. Taguett, T. Aubert, M. Lomello, O. Legrani, O. Elmazria, J. Ghanbaja, A. Talbi, Sensors Actuators A Phys. 243 (2016) 35-42.
DOI URL |
[5] | M.P. da Cunha, T. Moonlight, R. Lad, D. Frankel, G. Bernhard, in: Proceedings of the High temperature sensing technology for applications up to 10 0 0 C, IEEE, 2008, pp. 752-755. in: SENSORS, 2008 IEEE. |
[6] |
G. Tortissier, L. Blanc, A. Tetelin, J.L. Lachaud, M. Benoit, V. Conédéra, C. Dejous, D. Rebière, Sensors Actuators B Chem. 156 (2011) 510-516.
DOI URL |
[7] |
S.L. Firebaugh, K.F. Jensen, M.A. Schmidt, J. Microelectromech. Syst. 7 (1998) 128-135.
DOI URL |
[8] | J. Puigcorbé, D. Vogel, B. Michel, A. Vilà, I. Gràcia, C. Cané, J. Morante, J. Mi-cromech. Microeng. 13 (2003) S119. |
[9] | C. Caliendo, F.L. Castro, in: Anti-Abrasive Nanocoatings, Elsevier, 2015, pp. 429-453. |
[10] |
S. Sharma, J. Spitz, Thin Solid Films 65 (1980) 339-350.
DOI URL |
[11] |
C.M. Müller, R. Spolenak, Acta Mater. 58 (2010) 6035-6045.
DOI URL |
[12] |
W.W. Jung, S.K. Choi, S.Y. Kweon, S.J. Yeom, Appl. Phys. Lett. 83 (2003) 2160-2162.
DOI URL |
[13] |
D.E. Packham, Int. J. Adhesion Adhesives 23 (2003) 437-448.
DOI URL |
[14] |
D. Srolovitz, S. Safran, J. Appl. Phys. 60 (1986) 247-254.
DOI URL |
[15] |
C.V. Thompson, Ann. Rev. Mater. Res. 42 (2012) 399-434.
DOI URL |
[16] |
H. Galinski, T. Ryll, P. Elser, J. Rupp, A. Bieberle-Hütter, L. Gauckler, Phys. Rev. B 82 (2010) 235415.
DOI URL |
[17] |
A.M. Glaeser, Interface Sci. 9 (2001) 65-82.
DOI URL |
[18] |
S.Y. Kweon, S.J. Yeom, H.J. Sun, N.K. Kim, Y.S. Yu, S.K. Lee, Integr. Ferroelectr. 25 (1999) 299-309.
DOI URL |
[19] |
S.Y. Kweon, S.K. Choi, S.J. Yeom, J.S. Roh, Jpn. J. Appl. Phys. 40 (2001) 5850.
DOI URL |
[20] |
M. Seifert, E. Brachmann, G.K. Rane, S.B. Menzel, T. Gemming, Materials 10 (2017) 54.
DOI URL |
[21] |
J. Courbat, D. Briand, N.F. de Rooij, Sensors Actuators A Phys. 142 (2008) 284-291.
DOI URL |
[22] |
H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. De Ceuninck, L. De Schepper, Sensors Actuators B Chem. 65 (2000) 190-192.
DOI URL |
[23] |
A. Garraud, P. Combette, A. Giani, Thin Solid Films 540 (2013) 256-260.
DOI URL |
[24] |
R.M. Tiggelaar, R.G. Sanders, A. Groenland, J.G. Gardeniers, Sensors Actuators A Phys. 152 (2009) 39-47.
DOI URL |
[25] |
D.J. Frankel, S.C. Moulzolf, M.P. da Cunha, R.J. Lad, Surf. Coat. Technol. 284 (2015) 215-221.
DOI URL |
[26] | S.C. Moulzolf, D.J. Frankel, M.P. da Cunha, R.J. Lad, in: Smart Sensors, Actuators, and MEMS VI, International Society for Optics and Photonics, 2013, p. 87630F. |
[27] |
S.C. Moulzolf, D.J. Frankel, M.P. da Cunha, R.J. Lad, Microsyst. Technol. 20 (2014) 523-531.
DOI URL |
[28] |
J.A. Sharon, P.C. Su, F.B. Prinz, K.J. Hemker, Scr. Mater. 64 (2011) 25-28.
DOI URL |
[29] |
S. Halder, T. Schneller, R. Waser, Appl. Phys. A 87 (2007) 705-708.
DOI URL |
[30] | R. Budhani, S. Prakash, H. Doerr, R. Bunshah, Oxygen Enhanced Adhesion of Platinum Films Deposited On Thermally Grown Alumina Surfaces, American Vacuum Society, 1986. |
[31] | H.J. Woo, D.Y. Park, D.S. Lee, D. il Chun, E.J. Yoon, Apparatus and Methods of Depositing a Platinum Film With Anti-Oxidizing Function Over a Substrate, Google Patents, 2000. |
[32] |
D.S. Lee, D.Y. Park, M.H. Kim, D.I. Chun, J. Ha, E. Yoon, MRS Proc. 441 (1996) 341-346.
DOI URL |
[33] | J.D. Wrbanek, K.L. Laster, Preparation and Analysis of Platinum Thin Films For High Temperature Sensor Applications, 2005. |
[34] |
D. Gan, P.S. Ho, Y. Pang, R. Huang, J. Leu, J. Maiz, T. Scherban, J. Mater. Res. 21 (2006) 1512-1518.
DOI URL |
[35] |
S.H. Lee, J.C. Bravman, J.C. Doan, S. Lee, P.A. Flinn, T.N. Marieb, J. Appl. Phys. 91 (2002) 3653-3657.
DOI URL |
[36] |
T. Naoe, H. Endoh, F. Fuchino, M. Miyata, H. Miyake, T. Takahashi, T. Fujimoto, Mater. Sci. Semiconduct. Process. 83 (2018) 239-248.
DOI URL |
[37] | P. Flinn, S. Lee, J. Doan, T. Marieb, J. Bravman, M. Madden, in: Proceed-ings of the AIP Conference Proceedings, American Institute of Physics, 1998, pp. 250-261. |
[38] |
R. Gleixner, B. Clemens, W. Nix, J. Mater. Res. 12 (1997) 2081-2090.
DOI URL |
[39] |
B. Clemens, W. Nix, R. Gleixner, J. Mater. Res. 12 (1997) 2038-2042.
DOI URL |
[40] |
Y.L. Shen, J. Appl. Phys. 84 (1998) 5525-5530.
DOI URL |
[41] |
R. Gleixner, W. Nix, MRS Proc. 436 (1996) 405-410.
DOI URL |
[42] |
G.S. Doerk, C. Carraro, R. Maboudian, Phys. Rev. B 80 (2009) 073306.
DOI URL |
[43] | J. Lee, T. Beechem, T.L. Wright, B.A. Nelson, S. Graham, W.P. King, J. Microelec-tromech. Syst. 15 (2006) 1644-1655. |
[44] |
C. Manuela Müller, R. Spolenak, J. Appl. Phys. 113 (2013) 094301.
DOI URL |
[45] |
C. Kennefick, R. Raj, Acta Metall. 37 (1989) 2947-2952.
DOI URL |
[46] |
F. Badawi, P. Villain, J. Appl. Crystallogr. 36 (2003) 869-879.
DOI URL |
[47] |
P. Alexander, R. Hoffman, J. Vacuum Sci. Technol. 13 (1976) 96-98.
DOI URL |
[48] | M.H. Kim, T.S. Park, D.S. Lee, Y.E. Lee, D.Y. Park, H.J. Woo, D.I. Chun, E. Yoon, J. Ha, MRS Online Proc. Libr. Arch. 441 (1996) 427-432. |
[49] | W.M. Haynes, CRC Handbook of Chemistry and Physics, CRC Press, 2014. |
[50] |
L. Mele, T. Rossi, M. Riccio, E. Iervolino, F. Santagata, A. Irace, G. Breglio, J. Creemer, P. Sarro, Proc. Eng. 25 (2011) 387-390.
DOI URL |
[51] |
O. Kraft, P. Wellner, M. Hommel, R. Schwaiger, E. Arzt, Z. Metall. 93 (2002) 392-400.
DOI URL |
[52] |
W. Gruber, S. Chakravarty, C. Baehtz, W. Leitenberger, M. Bruns, A. Kobler, C. Kübel, H. Schmidt, Phys. Rev. Lett. 107 (2011) 265501.
PMID |
[53] |
N. Singh, A. Bower, D. Gan, S. Yoon, P. Ho, J. Leu, S. Shankar, J. Appl. Phys. 97 (2005) 013539.
DOI URL |
[54] |
V. Srikar, C. Thompson, Appl. Phys. Lett. 74 (1999) 37-39.
DOI URL |
[55] |
W.W. Mullins, J. Appl. Phys. 28 (1957) 333-339.
DOI URL |
[56] |
R.V. Zucker, D. Chatain, U. Dahmen, S. Hagège, W.C. Carter, J. Mater. Sci. 47 (2012) 8290-8302.
DOI URL |
[57] |
J.M. Zhang, F. Ma, X.K. Wei, Chin. Phys. 13 (2004) 1082.
DOI URL |
[58] |
R. Fleck, D. Taplin, C. Beevers, Acta Metall. 23 (1975) 415-424.
DOI URL |
[59] |
R. Yu, H. Song, X.F. Zhang, P. Yang, J. Phys. Chem. B 109 (2005) 6940-6943.
DOI URL |
[60] | J.T. van Omme, M. Zakhozheva, R.G. Spruit, M. Sholkina, H.H.P. Garza, Ultrami-croscopy 192 (2018) 14-20. |
[61] |
K. Hinode, I. Asano, Y. Homma, IEEE Trans. Electron Dev. 36 (1989) 1050-1055.
DOI URL |
[62] |
H. Okabayashi, Mater. Sci. Eng. R 11 (1993) 191-241.
DOI URL |
[63] |
R. Balluffi, J. Bkakely, Thin Solid Films 25 (1975) 363-392.
DOI URL |
[64] |
S. Baker, Y.C. Joo, M. Knauß, E. Arzt, Acta Mater. 48 (2000) 2199-2208.
DOI URL |
[65] | W. Gust, S. Mayer, A. Bögel, B. Predel, Le J. Phys. Colloq. 46 (C4) (1985) 537-544. |
[66] |
J. Schoen, J. Appl. Phys. 51 (1980) 513-521.
DOI URL |
[67] |
Y.L. Shen, Y. Guo, C. Minor, Acta Mater. 48 (2000) 1667-1678.
DOI URL |
[1] | Liping Han, Bo Li, Hao Wen, Yuxi Guo, Zhan Lin. Photocatalytic degradation of mixed pollutants in aqueous wastewater using mesoporous 2D/2D TiO2(B)-BiOBr heterojunction [J]. J. Mater. Sci. Technol., 2021, 70(0): 175-184. |
[2] | Kun Wang, Xian Tong, Jixing Lin, Aiping Wei, Yuncang Li, Matthew Dargusch, Cuie Wen. Binary Zn-Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity [J]. J. Mater. Sci. Technol., 2021, 74(0): 216-229. |
[3] | Lin Lu, Qianqian Liu. Synergetic effects of photo-oxidation and biodegradation on failure behavior of polyester coating in tropical rain forest atmosphere [J]. J. Mater. Sci. Technol., 2021, 64(0): 195-202. |
[4] | Jingjun Liu, Wei Fu, Yulong Liao, Jiajie Fan, Quanjun Xiang. Recent advances in crystalline carbon nitride for photocatalysis [J]. J. Mater. Sci. Technol., 2021, 91(0): 224-240. |
[5] | Kai Chen, Xuenan Gu, Hui Sun, Hongyan Tang, Hongtao Yang, Xianghui Gong, Yubo Fan. Fluid-induced corrosion behavior of degradable zinc for stent application [J]. J. Mater. Sci. Technol., 2021, 91(0): 134-147. |
[6] | Baijie Song, Shuanghao Wu, Hao Yan, Kun Zhu, Liuxue Xu, Bo Shen, Jiwei Zhai. Fatigue-less relaxor ferroelectric thin films with high energy storage density via defect engineer [J]. J. Mater. Sci. Technol., 2021, 77(0): 178-186. |
[7] | Xin Wang, Jiaqian Zhu, Xiang Yu, Xionghui Fu, Yi Zhu, Yuanming Zhang. Enhanced removal of organic pollutant by separable and recyclable rGH-PANI/BiOI photocatalyst via the synergism of adsorption and photocatalytic degradation under visible light [J]. J. Mater. Sci. Technol., 2021, 77(0): 19-27. |
[8] | Hong-Lei Chen, Xue-Mei Luo, Dong Wang, Peter Schaaf, Guang-Ping Zhang. Achieving very high cycle fatigue performance of Au thin films for flexible electronic applications [J]. J. Mater. Sci. Technol., 2021, 89(0): 107-113. |
[9] | Dong-Eun Lee, Satyanarayana Moru, Wan-Kuen Jo, Surendar Tonda. Porous g-C3N4-encapsulated TiO2 hollow sphere as a high-performance Z-scheme hybrid for solar-induced photocatalytic abatement of environmentally toxic pharmaceuticals [J]. J. Mater. Sci. Technol., 2021, 82(0): 21-32. |
[10] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
[11] | Sheng Guo, Zhixiong Yang, Huali Zhang, Wei Yang, Jun Li, Kun Zhou. Enhanced photocatalytic degradation of organic contaminants over CaFe2O4 under visible LED light irradiation mediated by peroxymonosulfate [J]. J. Mater. Sci. Technol., 2021, 62(0): 34-43. |
[12] | Zhuang-Hao Zheng, Jun-Yu Niu, Dong-Wei Ao, Bushra Jabar, Xiao-Lei Shi, Xin-Ru Li, Fu Li, Guang-Xing Liang, Yue-Xing Chen, Zhi-Gang Chen, Ping Fan. In-situ growth of high-performance (Ag, Sn) co-doped CoSb3 thermoelectric thin films [J]. J. Mater. Sci. Technol., 2021, 92(0): 178-185. |
[13] | Yuchen Chi, Feng Chen, Hangning Wang, Fengxiang Qin, Haifeng Zhang. Highly efficient degradation of acid orange II on a defect-enriched Fe-based nanoporous electrode by the pulsed square-wave method [J]. J. Mater. Sci. Technol., 2021, 92(0): 40-50. |
[14] | Yihe Zhang, Li Zhang, Guotao Yang, Yalin Yao, Xu Wei, Tianchi Pan, Juntao Wu, Moufeng Tian, Penggang Yin. Recent advances in recyclable thermosets and thermoset composites based on covalent adaptable networks [J]. J. Mater. Sci. Technol., 2021, 92(0): 75-87. |
[15] | Bing Yang, Gang He, Qian Gao, Wenhao Wang, Yongchun Zhang, Yufeng Xia, Xiaofen Xu, Leini Wang, Miao Zhang. Illumination interface stability of aging-diffusion-modulated high performance InZnO/DyOx transistors and exploration in digital circuits [J]. J. Mater. Sci. Technol., 2021, 87(0): 143-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||