J. Mater. Sci. Technol. ›› 2021, Vol. 95: 20-28.DOI: 10.1016/j.jmst.2021.02.070
• Research Article • Previous Articles Next Articles
Jun Zhaoa, Bin Jianga,b,*(), Yuan Yuana,*(
), Qinghang Wangc, Ming Yuana, Aitao Tanga, Guangsheng Huanga, Dingfei Zhanga, Fusheng Pana,b
Received:
2021-01-14
Revised:
2021-02-26
Accepted:
2021-02-27
Published:
2021-12-30
Online:
2021-05-17
Contact:
Bin Jiang,Yuan Yuan
About author:
yuanyuan17@cqu.edu.cn (Y. Yuan).Jun Zhao, Bin Jiang, Yuan Yuan, Qinghang Wang, Ming Yuan, Aitao Tang, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Understanding the enhanced ductility of Mg-Gd with Ca and Zn microalloying by slip trace analysis[J]. J. Mater. Sci. Technol., 2021, 95: 20-28.
Alloy | Mg | Gd | Ca | Zn |
---|---|---|---|---|
Mg-0.6Gd | Bal. | 0.55 | - | - |
Mg-0.6Gd-0.3Ca-0.2Zn | Bal. | 0.63 | 0.26 | 0.24 |
Table 1 Chemical compositions of the alloys (wt%).
Alloy | Mg | Gd | Ca | Zn |
---|---|---|---|---|
Mg-0.6Gd | Bal. | 0.55 | - | - |
Mg-0.6Gd-0.3Ca-0.2Zn | Bal. | 0.63 | 0.26 | 0.24 |
Fig. 2. SEM micrographs of the extruded sheets: (a) Mg-0.6Gd and (b) Mg-0.6Gd-0.3Ca-0.2Zn. The EDS results of the secondary phases are inserted in the SEM micrographs.
Fig. 3. IPF maps, (0001) pole figures and the Schmid factor for basal slip distributions (presuming a tensile stress along the ED) of the extruded sheets: (a, c, e) Mg-0.6Gd and (b, d, f) Mg-0.6Gd-0.3Ca-0.2Zn.
Sheet | EF (%) | YS (MPa) | UTS (MPa) | n |
---|---|---|---|---|
Mg-0.6Gd | 19 | 78 | 195 | 0.29 |
Mg-0.6Gd-0.3Ca-0.2Zn | 26 | 82 | 231 | 0.31 |
Table 2 EF, YS, UTS and n of extruded sheets.
Sheet | EF (%) | YS (MPa) | UTS (MPa) | n |
---|---|---|---|---|
Mg-0.6Gd | 19 | 78 | 195 | 0.29 |
Mg-0.6Gd-0.3Ca-0.2Zn | 26 | 82 | 231 | 0.31 |
Fig. 7. Orientations of grains with different slip traces and the corresponding Schmid factor distribution of the extruded sheets: (a, b) Mg-0.6Gd and (c, d) Mg-0.6Gd-0.3Ca-0.2Zn.
Fig. 8. IPF, band contrast maps and the orientations of grains with tensile twin of extruded sheets after a stain of 10% along the ED: a, c, e) Mg-0.6Gd and (b, d, f) Mg-0.6Gd-0.3Ca-0.2Zn.
Fig. 9. SEM images of grain boundary cracks in (a-c) Mg-0.6Gd and (d-f) Mg-0.6Gd-0.3Ca-0.2Zn sheets after a strain of 10%, and (g-i) Mg-0.6Gd-0.3Ca-0.2Zn sheet after a strain of 15%.
Fig. 11. (a) BF-STEM image, (b) corresponding HAADF-STEM image from an extruded Mg-0.6Gd-0.3Ca-0.2Zn sheet, (c) EDX line scan indicated black arrow across the grain boundary in Fig. 10b and EDX mapping showing (d) Gd solute segregation, (e) Ca solute segregation and (f) Zn solute segregation.
[1] |
Q. Yang, B. Jiang, L. Wang, J. Dai, J. Zhang, F. Pan, J. Alloys Compd. 814 (2020) 152278.
DOI URL |
[2] | T. Xu, Y. Yan, X. Peng, J. Song, F. Pan, J. Magnes. Alloy. 5 (2019) 536-544. |
[3] |
Q. Wang, Y. Song, B. Jiang, J. Fu, A. Tang, H. Sheng, J. Song, D. Zhang, Z. Jiang, G. Huang, F. Pan, Mater. Sci. Eng. A 769 (2020) 138476.
DOI URL |
[4] | X. Liu, Z. Zhang, W. Hu, Q. Le, L. Bao, J. Cui, J. Mater. Sci. Technol. 32 (2016) 313-319. |
[5] |
Q. Li, G.J. Huang, X.D. Huang, S.W. Pan, C.L. Tan, Q. Liu, J. Magnes. Alloy 5 (2017) 166-172.
DOI URL |
[6] |
H. Zhang, Y. Liu, J. Fan, H.J. Roven, W. Cheng, B. Xu, H. Dong, J. Alloys Compd. 615 (2014) 687-692.
DOI URL |
[7] |
J. Xu, T. Yang, B. Jiang, J. Song, J. He, Q. Wang, Y. Chai, G. Huang, F. Pan, J. Alloys Compd. 762 (2018) 719-729.
DOI URL |
[8] |
K.K. Alaneme, E.A. Okotete, J. Magnes. Alloy. 5 (2017) 460-475.
DOI URL |
[9] |
H. Pan, R. Kang, J. Li, H. Xie, Z. Zeng, Q. Huang, C. Yang, Y. Ren, G. Qin, Acta Mater. 186 (2020) 278-290.
DOI URL |
[10] |
Y. Wang, J. Peng, L. Zhong, J. Alloy. Compd. 744 (2018) 234-242.
DOI URL |
[11] |
Q. Yang, B. Jiang, B. Song, Z. Yu, D. He, Y. Chai, J. Zhang, F. Pan, J. Magnes. Alloy. (2020) doi.org/10.1016/j.jma.2020.08.005.
DOI |
[12] |
S.W. Lee, S.H. Kim, W.K. Jo, W.H. Hong, S.H. Park, J. Alloy. Compd. 791 (2019) 700-710.
DOI URL |
[13] |
S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, D. Raabe, Acta Mater. 60 (2012) 3011-3021.
DOI URL |
[14] |
W. Wu, L. Jin, F. Wang, J. Sun, Z. Zhang, W. Ding, J. Dong, Mater. Sci. Eng. A 582 (2013) 194-202.
DOI URL |
[15] |
K.H. Kim, J.B. Jeon, N.J. Kim, B.J. Lee, Scr. Mater. 108 (2015) 104-108.
DOI URL |
[16] | Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, W.A. Curtin, Science 359 (2018) 447-452. |
[17] |
H.J. Bong, X. Hu, X. Sun, Y. Ren, Int. J. Plast. 113 (2019) 35-51.
DOI URL |
[18] |
H.J. Bong, D. Yoo, D. Kim, Y.N. Kwon, J. Lee, J. Manuf. Process. 58 (2020) 775-786.
DOI URL |
[19] | H.J. Bong, J. Lee, X. Hu, X. Sun, M.-G. Lee, Int.J. Plast. 126 (2020) 102630. |
[20] |
S. Kim, J. Jung, B.S. You, S.H. Park, J. Alloy. Compd. 695 (2017) 344-350.
DOI URL |
[21] |
F. Zhang, Y. Wang, Y. Duan, K. Wang, Y. Wang, W. Zhang, J. Hu, J. Alloys Compd. 788 (2019) 541-548.
DOI URL |
[22] |
N. Stanford, D. Atwell, M.R. Barnett, Acta Mater. 58 (2010) 6773-6783.
DOI URL |
[23] |
J. Zhao, B. Jiang, Y. Yuan, A. Tang, H. Sheng, T. Yang, G. Huang, D. Zhang, F. Pan, Mater. Sci. Eng. A 772 (2020) 138779.
DOI URL |
[24] |
Y. Chai, C. He, B. Jiang, J. Fu, Z. Jiang, Q. Yang, H. Sheng, G. Huang, D. Zhang, F. Pan, J. Mater. Sci. Technol. 37 (2020) 26-37.
DOI URL |
[25] |
H. Pan, C. Yang, Y. Yang, Y. Dai, D. Zhou, L. Chai, Q. Huang, Q. Yang, S. Liu, Y. Ren, G. Qin, Mater. Lett. 237 (2019) 65-68.
DOI URL |
[26] |
B. Zhang, Y. Wang, L. Geng, C. Lu, Mater. Sci. Eng. A 539 (2012) 56-60.
DOI URL |
[27] |
J. Hofstetter, S. Ruedi, I. Baumgartner, H. Kilian, B. Mingler, E. Povoden-Karad-eniz, S. Pogatscher, P.J. Uggowitzer, J.F. Loffler, Acta Mater 98 (2015) 423-432.
DOI URL |
[28] |
Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, J.F. Nie, Acta Mater. 105 (2016) 479-494.
DOI URL |
[29] |
B. Langelier, A.M. Nasiri, S.Y. Lee, M.A. Gharghouri, S. Esmaeili, Mater. Sci. Eng. A 620 (2015) 76-84.
DOI URL |
[30] |
H. Ding, X. Shi, Y. Wang, G. Cheng, S. Kamado, Mater. Sci. Eng. A 645 (2015) 196-204.
DOI URL |
[31] | J. Zhao, J. Fu, B. Jiang, A. Tang, H. Sheng, T. Yang, G. Huang, D. Zhang, F. Pan, Met. Mater. Int. 645 (2019) 1-13. |
[32] |
M. Jahedi, B.A. McWilliams, P. Moy, M. Knezevic, Acta Mater 131 (2017) 221-232.
DOI URL |
[33] |
W.X. Wu, L. Jin, J. Dong, W.J. Ding, Mater. Sci. Eng. A 593 (2014) 48-54.
DOI URL |
[34] |
C.J. Boehlert, Z. Chen, I. Gutierrez-Urrutia, J. Llorca, M.T. Perez-Prado, Acta Mater. 60 (2012) 1889-1904.
DOI URL |
[35] |
C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, M.T. Pérez-Prado, Acta Mater 88 (2015) 232-244.
DOI URL |
[36] |
D.F. Shi, M.T. Pérez-Prado, C.M. Cepeda-Jiménez, Acta Mater. 180 (2019) 218-230.
DOI |
[37] |
C.M. Cepeda-Jiménez, C. Prado-Martínez, M.T. Pérez-Prado, Acta Mater 145 (2018) 264-277.
DOI URL |
[38] |
C.M. Cepeda-Jiménez, M. Castillo-Rodríguez, M.T. Pérez-Prado, Acta Mater 165 (2019) 164-176.
DOI |
[39] |
C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, M.T. Pérez-Prado, Acta Mater 84 (2015) 443-456.
DOI URL |
[40] |
T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, D. Raabe, Int. J. Plast. 25 (2009) 1655-1683.
DOI URL |
[41] |
H. Li, D.E. Mason, T.R. Bieler, C.J. Boehlert, M.A. Crimp, Acta Mater 61 (2013) 7555-7567.
DOI URL |
[42] |
C. Zhao, X. Chen, F. Pan, S. Gao, D. Zhao, X. Liu, Mater. Sci. Eng. A 713 (2018) 244-252.
DOI URL |
[43] |
H. Paul, J.H. Driver, C. Maurice, Z. Jasienski, Mater. Sci. Eng. A 359 (2003) 178-191.
DOI URL |
[44] |
S. Sandl €obes, I. Schestakow, S. Yi, S. Zaefferer, J. Chen, M. Friak, J. Neugebauer, D. Raabe, Mater. Sci. Forum 690 (2011) 202-205.
DOI URL |
[45] |
J. Shi, M.A. Zikry, Int. J. Solids Struct. 46 (2009) 3914-3925.
DOI URL |
[46] |
M. Yamaguchi, Metall. Mater. Trans. A 42 (2011) 319-329.
DOI URL |
[47] |
M. Yamaguchi, M. Shiga, H. Kaburaki, Science 307 (2005) 393-397.
PMID |
[48] |
J. Luo, H. Cheng, K.M. Asl, C.J. Kiely, M.P. Harmer, Science 333 (2011) 1730-1733.
DOI URL |
[49] |
R. Schweinfest, A.T. Paxton, M.W. Finnis, Nature 432 (2004) 1008-1011.
DOI URL |
[50] | J. Zhao, B. Jiang, Y. Yuan, et al., Mater. Sci. Eng. A 104 (2020) 139344. |
[51] |
T. Hase, T. Ohtagaki, M. Yamaguchi, et al., Acta Mater. 104 (2016) 283-294.
DOI URL |
[52] | Y. Guo, Q. Luo, B. Liu, et al., Scr.Mater. 178 (2020) 422-427. |
[53] | Q. Luo, Y. Guo, B. Liu, et al., in: J. Mater. Sci. Technol., 2020, pp. 171-190. |
[1] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[2] | D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping [J]. J. Mater. Sci. Technol., 2021, 87(0): 184-195. |
[3] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[4] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
[5] | Meiying Lv, Xuchao Chen, Zhenxin Li, Min Du. Effect of sulfate-reducing bacteria on hydrogen permeation and stress corrosion cracking behavior of 980 high-strength steel in seawater [J]. J. Mater. Sci. Technol., 2021, 92(0): 109-119. |
[6] | Zhong-Zheng Jin, Min Zha, Hai-Long Jia, Pin-Kui Ma, Si-Qing Wang, Jia-Wei Liang, Hui-Yuan Wang. Balancing the strength and ductility of Mg-6Zn-0.2Ca alloy via sub-rapid solidification combined with hard-plate rolling [J]. J. Mater. Sci. Technol., 2021, 81(0): 219-228. |
[7] | Chaoqun Dang, Weitong Lin, Fanling Meng, Hongti Zhang, Sufeng Fan, Xiaocui Li, Ke Cao, Haokun Yang, Wenzhao Zhou, Zhengjie Fan, Ji-jung Kai, Yang Lu. Enhanced tensile ductility of tungsten microwires via high-density dislocations and reduced grain boundaries [J]. J. Mater. Sci. Technol., 2021, 95(0): 193-202. |
[8] | Jing Li, Mengjie Zhao, Li Jin, Fenghua Wang, Shuai Dong, Jie Dong. Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd-3.0Y-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 195-200. |
[9] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[10] | Rui Jiang, Shengnan Qian, Chuang Dong, Ying Qin, Yujuan Wu, Jianxin Zou, Xiaoqin Zeng. Composition optimization of high-strength Mg-Gd-Y-Zr alloys based on the structural unit of Mg-Gd solid solution [J]. J. Mater. Sci. Technol., 2021, 72(0): 104-113. |
[11] | Xin Dong, Ning Li, Yanan Zhou, Huabei Peng, Yuntao Qu, Qi Sun, Haojiang Shi, Rui Li, Sheng Xu, Jiazhen Yan. Grain boundary character and stress corrosion cracking behavior of Co-Cr alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 93(0): 244-253. |
[12] | Jie Wang, Gaoming Zhu, Leyun Wang, Evgenii Vasilev, Jun-Sang Park, Gang Sha, Xiaoqin Zeng, Marko Knezevic. Origins of high ductility exhibited by an extruded magnesium alloy Mg-1.8Zn-0.2Ca: Experiments and crystal plasticity modeling [J]. J. Mater. Sci. Technol., 2021, 84(0): 27-42. |
[13] | Y.L. Qi, L. Zhao, X. Sun, H.X. Zong, X.D. Ding, F. Jiang, H.L. Zhang, Y.K. Wu, L. He, F. Liu, S.B. Jin, G. Sha, J. Sun. Enhanced mechanical performance of grain boundary precipitation-hardened high-entropy alloys via a phase transformation at grain boundaries [J]. J. Mater. Sci. Technol., 2021, 86(0): 271-284. |
[14] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[15] | Kaisheng Ming, Shuimiao Jiang, Xiaoyuan Niu, Bo Li, Xiaofang Bi, Shijian Zheng. High-temperature strength-coercivity balance in a FeCo-based soft magnetic alloy via magnetic nanoprecipitates [J]. J. Mater. Sci. Technol., 2021, 81(0): 36-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||