J. Mater. Sci. Technol. ›› 2021, Vol. 95: 29-39.DOI: 10.1016/j.jmst.2021.03.065
• Research Article • Previous Articles Next Articles
Yuanyuan Qiaoa, Xiaoying Liua, Ning Zhaoa,*(), Lawrence C M Wub, Chunying Liua, Haitao Maa
Received:
2020-11-16
Accepted:
2021-03-22
Published:
2021-12-30
Online:
2021-05-24
Contact:
Ning Zhao
About author:
* E-mail address: zhaoning@dlut.edu.cn (N. Zhao).Yuanyuan Qiao, Xiaoying Liu, Ning Zhao, Lawrence C M Wu, Chunying Liu, Haitao Ma. Morphology and orientation evolution of Cu6Sn5 grains on (001)Cu and (011)Cu single crystal substrates under temperature gradient[J]. J. Mater. Sci. Technol., 2021, 95: 29-39.
Fig. 1. Top-view SEM images of the as-reflowed Cu6Sn5 grains on (a) (001)Cu and (b) (011)Cu; cross-sectional SEM images and EBSD maps in RD of the Cu6Sn5 grains on (c,e) (001)Cu and (d,f) (011)Cu after isothermal reflow for 10 min, respectively.
Fig. 2. Microstructure of the (001)Cu/Sn/Cu micro solder joint reflowed under TG for 15 min: (a) cross-sectional SEM image, (b) phase map, (c) inverse pole figure of the Cu6Sn5 IMC in RD, (d)-(f) EBSD orientation maps in RD, TD and ND, respectively.
Fig. 3. Microstructure of the (001)Cu/Sn/Cu micro solder joint reflowed under TG for 60 min: (a) cross-sectional SEM image, (b) phase map, (c) inverse pole figure of the Cu6Sn5 IMC in RD, (d)-(f) EBSD orientation maps in RD, TD and ND, respectively.
Fig. 4. Microstructure of the fully IMC joint by reflowing a (001)Cu/Sn/Cu micro solder joint under TG for 120 min: (a) cross-sectional SEM image, (b) phase map, (c) inverse pole figure of the Cu6Sn5 IMC in RD, (d)-(f) EBSD orientation maps in RD, TD and ND, respectively.
Fig. 5. Microstructure of the (011)Cu/Sn/Cu micro solder joint reflowed under TG for 15 min: (a) cross-sectional SEM image, (b) phase map, (c) inverse pole figure of the Cu6Sn5 IMC in RD, (d)-(f) EBSD orientation maps in RD, TD and ND, respectively.
Condition | 15 min | 60 min | 120 min | ||||||
---|---|---|---|---|---|---|---|---|---|
Grain No. | 1# | 2# | 3# | 1# | 2# | 3# | 1# | 2# | 3# |
θ angle (o) | 31.2 | 31.6 | 68.9 | 30.0 | 31.8 | 71.3 | 29.6 | 31.7 | 71.9 |
Table 1 Values of θ angle in the (011)Cu/Sn/Cu micro solder joints.
Condition | 15 min | 60 min | 120 min | ||||||
---|---|---|---|---|---|---|---|---|---|
Grain No. | 1# | 2# | 3# | 1# | 2# | 3# | 1# | 2# | 3# |
θ angle (o) | 31.2 | 31.6 | 68.9 | 30.0 | 31.8 | 71.3 | 29.6 | 31.7 | 71.9 |
Fig. 6. Microstructure of the (011)Cu/Sn/Cu micro solder joint reflowed under TG for 60 min: (a) cross-sectional SEM image, (b) phase map, (c) inverse pole figure of the Cu6Sn5 IMC in RD, (d)-(f) EBSD orientation maps in RD, TD and ND, respectively.
Fig. 7. Microstructure of the (011)Cu/Sn/Cu micro solder joint reflowed under TG for 120 min: (a) cross-sectional SEM image, (b) phase map, (c) inverse pole figure of the Cu6Sn5 IMC in RD, (d)-(f) EBSD orientation maps in RD, TD and ND, respectively.
Fig. 10. Misorientation distribution of the Cu6Sn5 grain boundary in the (001)Cu/Sn/Cu micro solder joints after reflowed under TG for (a) 15 min, (b) 60 min, (c) 120 min.
Fig. 12. Pole figures of the Cu6Sn5 grains and the (011)Cu in Fig. 6 after reflowed under TG for 60 min: (a) {0001} pole figure of Cu6Sn5, (b) $\{10\bar{1}0\}$ pole figure of Cu6Sn5, (c) summary of the poles of {110}Cu pole figure.
Fig. 14. Misorientation distributions of Cu6Sn5 grain boundary in the (011)Cu/Sn/Cu micro solder joints under TG for (a) 15 min, (b) 60 min, (c) 120 min.
Fig. 15. Schematics of morphology evolution of the Cu6Sn5 grains on the (001)Cu during reflow under TG: (a) as-reflowed, (b) 5 min, (c) 8 min, (d) 15 min.
Fig. 18. Schematic diagram of the Cu6Sn5 grains reflowed on different Cu substrates under different conditions: (a, b) isothermal reflow, (c, d) reflowed under TG.
[1] |
J.O. Suh, K.N. Tu, N. Tamura, Appl. Phys. Lett. 91 (2007) 051907.
DOI URL |
[2] |
J.H. Ke, Y. Gao, C.R. Kao, Y. Wang, Acta Mater 113 (2016) 245-258.
DOI URL |
[3] |
H.F. Zou, H.J. Yang, Z.F. Zhang, Acta Mater 56 (2008) 2649-2662.
DOI URL |
[4] |
Y.H. Tian, R. Zhang, C.J. Hang, L.N. Niu, C.Q. Wang, Mater. Charact. 88 (2014) 58-68.
DOI URL |
[5] |
H.F. Zou, Z.F. Zhang, J. Appl. Phys. 108 (2010) 103518.
DOI URL |
[6] |
H.F. Zou, H.J. Yang, Z.F. Zhang, J. Appl. Phys. 106 (2009) 113512.
DOI URL |
[7] |
J.M. Song, B.R. Huang, C.Y. Liu, Y.S. Lai, Y.T. Chiu, T.W. Huang, Mater. Sci. Eng. A 534 (2012) 53-59.
DOI URL |
[8] |
Z.H. Zhang, M.Y. Li, Z.Q. Liu, S.H. Yang, Acta Mater 104 (2016) 1-8.
DOI URL |
[9] |
L. Jiang, H.Q. Jiang, N. Chawla, J. Electron. Mater. 41 (2012) 2083-2088.
DOI URL |
[10] |
C.Y. Liu, Y.J. Hu, Y.S. Liu, H.W. Tseng, T.S. Huang, C.T. Lu, Y.C. Chuang, S.L. Cheng, Acta Mater 61 (2013) 5713-5719.
DOI URL |
[11] |
Q.S. Zhu, Z.F. Zhan, J.K. Shang, Z.G. Wang, Mater. Sci. Eng. A 435-436 (2006) 588-594.
DOI URL |
[12] |
Z.H. Zhang, H.J. Cao, M.Y. Li, Y.X. Yu, H.F. Yang, S.H. Yang, Mater. Des. 94 (2016) 280-285.
DOI URL |
[13] |
H.F. Zou, H.J. Yang, J. Tan, Z.F. Zhang, J. Mater. Res. 24 (2009) 2141-2144.
DOI URL |
[14] |
H.F. Zou, Z.F. Zhang, J. Alloys Compd. 469 (2009) 207-214.
DOI URL |
[15] |
W.M. Chen, T.L. Yang, C.K. Chung, C.R. Kao, Scr. Mater. 65 (2011) 331-334.
DOI URL |
[16] |
R. Zhang, Y.H. Tian, C.J. Hang, B.L. Liu, C.Q. Wang, Mater. Lett. 110 (2013) 137-140.
DOI URL |
[17] |
P.J. Shang, Z.Q. Liu, D.X. Li, J.K. Shang, Scr. Mater. 59 (2008) 317-320.
DOI URL |
[18] |
P.J. Shang, Z.Q. Liu, X.Y. Pang, D.X. Li, J.K. Shang, Acta Mater 57 (2009) 4697-4706.
DOI URL |
[19] |
I. Panchenko, K.J. Wolter, K. Croes, I.D. Wolf, J.D. Messemaeker, E. Beyne, M.J. Wolf, Microelectron. Reliab. 102 (2019) 113296.
DOI URL |
[20] |
Y. Zhong, N. Zhao, C.Y. Liu, W. Dong, Y.Y. Qiao, Y.P. Wang, H.T. Ma, Appl. Phys. Lett. 111 (2017) 223502.
DOI URL |
[21] |
N. Zhao, Y. Zhong, M.L. Huang, H.T. Ma, W. Dong, Sci. Rep. 5 (2015) 13491.
DOI PMID |
[22] |
L. Sun, M.H. Chen, L. Zhang, J. Alloys Compd. 786 (2019) 677-687.
DOI URL |
[23] | Y.Y. Qiao, N. Zhao, C.Y. Liu, C.M.L. Wu, Y.P. Wang, H.T. Ma, Mater. Today Com-mun. 23 (2020) 100928. |
[24] |
N. Zhao, Y. Zhong, M.L. Huang, H.T. Ma, W. Dong, Intermetallics 79 (2016) 28-34.
DOI URL |
[25] |
H.F. Zou, H.J. Yang, Z.F. Zhang, International Conference on Electronic Packag-ing Technology and High Density Packaging in:, 2009, doi: 10.1109/ICEPT.2009.5270621.
DOI |
[26] |
H.K. Kim, K.N. Tu, Phys. Rev. B 53 (1996) 16027-16034.
PMID |
[27] |
A.M. Gusak, K.N. Tu, Phys. Rev. B 66 (2002) 115403.
DOI URL |
[28] |
M.L. Huang, F. Yang, Sci. Rep. 4 (2015) 7117.
DOI URL |
[29] |
H.R. Ma, C. Dong, N. Zhao, Y.P. Wang, X.G. Li, H.T. Ma, J. Chen, Mater. Lett. 265 (2020) 127327.
DOI URL |
[30] |
J.O. Suh, K.N. Tu, G.V. Lutsenko, A.M. Gusak, Acta Mater 56 (2008) 1075-1083.
DOI URL |
[31] |
J. Zhang, W. Ludwig, Y.B. Zhang, H.H.B. Sørensen, D.J. Rowenhorst, A. Ya-manaka, P.W. Voorhees, H.F. Poulsen, Acta Mater 191 (2020) 211-220.
DOI URL |
[32] | H.R. Ma, C. Dong, P. Priyanka, Y.P. Wang, X.G. Li, H.T. Ma, J. Chen, Mater. Char-act. 166 (2020) 110449. |
[33] |
R. Chaim, Scr. Mater. 66 (2012) 269-271.
DOI URL |
[34] |
W.T. Read, W. Shockley, Phys. Rev. 78 (1950) 275-289.
DOI URL |
[35] |
S.E. Babcock, R.W. Balluffi, Acta Metall 37 (1989) 2357-2365.
DOI URL |
[36] |
S.E. Babcock, R.W. Balluffi, Acta Metall 37 (1989) 2367-2376.
DOI URL |
[37] |
G. Gottstein, L.S. Shvindlerman, Scr. Metall. Mater. 27 (1992) 1521-1526.
DOI URL |
[38] | G. Gottstein, L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermo-dynamics, Kinetics, Applications, second ed., Boca Raton, London, New York, 2010. |
[39] |
L. Qu, N. Zhao, H.J. Zhao, M.L. Huang, H.T. Ma, Scr. Mater. 72-73 (2014) 43-46.
DOI URL |
[1] | L.Y. Zhao, H. Yan, R.S. Chen, En-Hou Han. Orientations of nuclei during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 162-167. |
[2] | Xuefei Huang, Baoqin Fu, Weigang Huang. Newly observed irrational crystallographic features of non-basal Mg2Sn precipitates in a Mg-4Sn alloy aged at 160 °C [J]. J. Mater. Sci. Technol., 2021, 77(0): 237-243. |
[3] | Shuang Tian, Yushuang Liu, Peigen Zhang, Jian Zhou, Feng Xue, ZhengMing Sun. Tin whiskers prefer to grow from the [001] grains in a tin coating on aluminum substrate [J]. J. Mater. Sci. Technol., 2021, 80(0): 191-202. |
[4] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[5] | Shiyang Liu, Damon Kent, Hongyi Zhan, Nghiem Doan, Chang Wang, Sen Yu, Matthew Dargusch, Gui Wang. Influence of strain rate and crystallographic orientation on dynamic recrystallization of pure Zn during room-temperature compression [J]. J. Mater. Sci. Technol., 2021, 86(0): 237-250. |
[6] | Yujie Chen, Xianghai An, Sam Zhang, Feng Fang, Wenyi Huo, Paul Munroe, Zonghan Xie. Mechanical size effect of eutectic high entropy alloy: Effect of lamellar orientation [J]. J. Mater. Sci. Technol., 2021, 82(0): 10-20. |
[7] | Yingbin Chen, Qishan Huang, Qi Zhu, Kexing Song, Yanjun Zhou, Haofei Zhou, Jiangwei Wang. Coordinated grain boundary deformation governed nanograin annihilation in shear cycling [J]. J. Mater. Sci. Technol., 2021, 86(0): 180-191. |
[8] | Mi Yan, Shengbo Yi, Xiuyuan Fan, Zhenghua Zhang, Jiaying Jin, Guohua Bai. High-frequency MnZn soft magnetic ferrite by engineering grain boundaries with multiple-ion doping [J]. J. Mater. Sci. Technol., 2021, 79(0): 165-170. |
[9] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
[10] | Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 148-155. |
[11] | Huabao Yang, Liang Wu, Bin Jiang, Wenjun Liu, Jiangfeng Song, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62(0): 128-138. |
[12] | Jianwen Nie, Chaoyue Chen, Longtao Liu, Xiaodong Wang, Ruixin Zhao, Sansan Shuai, Jiang Wang, Zhongming Ren. Effect of substrate cooling on the epitaxial growth of Ni-based single-crystal superalloy fabricated by direct energy deposition [J]. J. Mater. Sci. Technol., 2021, 62(0): 148-161. |
[13] | Huan Zhang, Yangxin Li, Yuxuan Liu, Qingchun Zhu, Xixi Qi, Gaoming Zhu, Jinhui Wang, Peipeng Jin, Xiaoqin Zeng. The effect of basal <a> dislocation on $\left\{ 11\bar{2}1 \right\}$ twin boundary evolution in a Mg-Gd-Y-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 81(0): 212-218. |
[14] | Fusen Yuan, Geping Li, Fuzhou Han, Yingdong Zhang, Ali Muhammad, Wenbin Guo, Jie Ren, Chengze Liu, Hengfei Gu, Gaihuan Yuan. A new type face-centered cubic zirconium phase in pure zirconium [J]. J. Mater. Sci. Technol., 2021, 81(0): 236-239. |
[15] | Guanglong Li, Yingdong Qu, Yaohua Yang, Qiwen Zhou, Xishi Liu, Rongde Li. Improved multi-orientation dispersion of short carbon fibers in aluminum matrix composites prepared with square crucible by mechanical stirring [J]. J. Mater. Sci. Technol., 2020, 40(0): 81-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||