J. Mater. Sci. Technol. ›› 2021, Vol. 86: 237-250.DOI: 10.1016/j.jmst.2020.12.077
• Research Article • Previous Articles Next Articles
Shiyang Liua,b, Damon Kenta,b,c, Hongyi Zhand,*(), Nghiem Doanb,e, Chang Wangf, Sen Yuf, Matthew Darguscha,b, Gui Wanga,b,**(
)
Received:
2020-11-10
Accepted:
2020-12-29
Published:
2021-09-30
Online:
2021-09-24
Contact:
Hongyi Zhan,Gui Wang
About author:
* henry.zhan@gm.com (H. Zhan),Shiyang Liu, Damon Kent, Hongyi Zhan, Nghiem Doan, Chang Wang, Sen Yu, Matthew Dargusch, Gui Wang. Influence of strain rate and crystallographic orientation on dynamic recrystallization of pure Zn during room-temperature compression[J]. J. Mater. Sci. Technol., 2021, 86: 237-250.
Fig. 1. (a) Schematic diagram of as-cast pure Zn cylinder and compression specimens, (b) deformed specimen compressed at 0.5 s-1 to a strain of 161 %, and (c) schematic diagram of a deformed specimen showing the assigned observation directions.
Fig. 2. (a) True stress-strain curves and (b) strain hardening rate curves for as-cast pure Zn compressed at strain rates of 10-4 s-1, 10-2 s-1, and 0.5 s-1.
Fig. 4. Optical micrographs of Zn specimens strained to 22 % at a strain rate of (a) 10-4 s-1, (b) being a magnified image of the red highlighted rectangular region in (a), (c) 10-2 s-1, (d) being a magnified image of the red highlighted rectangular region in (c) and (e) 0.5 s-1, (f) being a magnified image of the red highlighted rectangular in (e).
Fig. 5. (a) EBSD IPF map of specimens strained to 22 % at a strain rate of 10-4 s-1, (b) corresponding GOS map of (a), (c) crystal orientations of framed grains in (b), and (d) the IGMA distribution for regions (A-B). (The hexagons show the crystal orientation at the corresponding sites).
Fig. 6. (a) EBSD IPF map of specimens strained to 22 % at a strain rate of 10-2 s-1, (b) the corresponding GOS map of (a), (c) isolated grains in (a), and (d) the IGMA distribution for regions (C-E). (The hexagons show the crystal orientation at the corresponding sites).
Fig. 7. (a) EBSD IPF map of specimens strained to 22 % at a strain rate of 0.5 s-1, (b) the corresponding GOS map of (a), (c) isolated grains in region (F), and the corresponding IGMA distribution of region (F). (The hexagons show the crystal orientation at the corresponding sites).
Fig. 8. Optical micrographs of Zn specimens strained to 51 % at a strain rate of (a) 10-4 s-1, (b) being a magnified image of the red rectangular region in (a), (c) 10-2 s-1, (d) being a magnified image of the red rectangular region in (c) and (e) 0.5 s-1, (f) being a magnified image of the red rectangular region in (e).
Fig. 9. EBSD IPF map of Zn specimens strained to 51 % at a strain rate of (a) 10-4 s-1, (d) 10-2 s-1, (g) 0.5 s-1, (b, e and h) IPF maps of sub-structured grains (GOS value > 1.5°), and (c,f and g) newly formed DRXed grains (GOS value < 1.5°) with their corresponding PFs. (The hexagons show the crystal orientation at the corresponding sites, and Fig. 9(g) is reproduced from the authours' previous study [27].).
Fig. 10. Optical micrographs of Zn specimens strained to 161 % at a strain rate of (a) 10-4 s-1, (b) being a magnified image of the red rectangular region in (a), (c) 10-2 s-1, (d) being a magnified image of the red rectangular region in (c) and (e) 0.5 s-1, (f) being a magnified image of the red rectangular region in (e). (Fig. 11(e-f) is reproduced from the authours' previous study [27].).
Fig. 11. EBSD IPF map of Zn specimens strained to 161 % at a strain rate of (a) 10-4 s-1, (b) 10-2 s-1, (c) 0.5 s-1, with their corresponding PFs. (Fig. 11(c) is reproduced from the authours' previous study [27], the scale bar of (c) differs with (a-b).).
Domains | A | B | C | D | E |
---|---|---|---|---|---|
SFpyramidal | 0.32 | 0.46 | 0.41 | 0.42 | 0.39 |
SFbasal | 0.48 | 0.19 | 0.05 | 0.09 | 0.22 |
P/B Ratio | 0.67 | 2.09 | 8.2 | 4.67 | 1.77 |
Domains | F | G | H | I | J |
SFpyramidal | 0.49 | 0.48 | 0.43 | 0.49 | 0.49 |
SFbasal | 0.33 | 0.3 | 0.16 | 0.18 | 0.21 |
P/B Ratio | 1.48 | 1.6 | 2.69 | 2.72 | 2.33 |
Table 1 SFpyramidal vs. SFbasal values and P/B ratio of selected domains in Figs. 5(a) and 6 (a).
Domains | A | B | C | D | E |
---|---|---|---|---|---|
SFpyramidal | 0.32 | 0.46 | 0.41 | 0.42 | 0.39 |
SFbasal | 0.48 | 0.19 | 0.05 | 0.09 | 0.22 |
P/B Ratio | 0.67 | 2.09 | 8.2 | 4.67 | 1.77 |
Domains | F | G | H | I | J |
SFpyramidal | 0.49 | 0.48 | 0.43 | 0.49 | 0.49 |
SFbasal | 0.33 | 0.3 | 0.16 | 0.18 | 0.21 |
P/B Ratio | 1.48 | 1.6 | 2.69 | 2.72 | 2.33 |
Fig. 12. (a) The plot of SFpyramidal vs. SFbasal for the domains C - M, and (b) type (ⅲ) domains C-E, (c) type (ⅱ) domains F-I, and (d) type (ⅰ) domains J-M and their corresponding crystal orientation.
[1] |
D.H. Zhu, I. Cockerill, Y.C. Su, Z.X. Zhang, J.Y. Fu, K.W. Lee, J. Ma, C. Okpokwasili, L.P. Tang, Y.F. Zheng, Y.X. Qin, Y.D. Wang, ACS Appl. Mater. Interfaces 11 (2019) 6809-6819.
DOI URL |
[2] |
E. Mostaed, M. Sikora-Jasinska, J.W. Drelich, M. Vedani, Acta Biomater. 71(2018) 1-23.
DOI PMID |
[3] |
D. Vojtech, J. Kubasek, J. Serak, P. Novak, Acta Biomater. 7(2011) 3515-3522.
DOI URL |
[4] | J.J.D. Venezuela, S. Johnston, M.S. Dargusch, Adv. Healthc. Mater. 8(2019), e1900408. |
[5] |
P.K. Bowen, J. Drelich, J. Goldman, Adv. Mater. 25(2013) 2577-2582.
DOI URL |
[6] |
G.K. Levy, J. Goldman, E. Aghion, Metals 7 (2017) 402.
DOI URL |
[7] |
H.T. Yang, C. Wang, C.Q. Liu, H.W. Chen, Y.F. Wu, J.T. Han, Z.C. Jia, W.J. Lin, D.Y. Zhang, W.T. Li, W. Yuan, H. Guo, H.F. Li, G.X. Yang, D.L. Kong, D.H. Zhu, K. Takashima, L.Q. Ruan, J.F. Nie, X. Li, Y.F. Zheng, Biomaterials 145 (2017) 92-105.
DOI URL |
[8] |
D.W. Zhao, F. Witte, F.Q. Lu, J.L. Wang, J.L. Li, L. Qin, Biomaterials 112 (2017) 287-302.
DOI URL |
[9] |
Y.J. Chen, Z.G. Xu, C. Smith, J. Sankar, Acta Biomater. 10(2014) 4561-4573.
DOI URL |
[10] | E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A.G. Demir, B. Preuitali, D. Mantouani, R. Beanland, M. Vedani, J. Mech. Behav 60(2016) 581-602. |
[11] |
P.K. Bowen, J.-M. Seitz, R.J. Guillory, J.P. Braykovich, S. Zhao, J. Goldman, J.W. Drelich, J. Biomed. Mater. Res. Part B 106 (2018) 245-258.
DOI URL |
[12] |
H.F. Li, H.T. Yang, Y.F. Zheng, F.Y. Zhou, K.J. Qiu, X. Wang, Mater. Des. 83(2015) 95-102.
DOI URL |
[13] | S.Y. Liu, D. Kent, N. Doan, M. Dargusch, G. Wang, Bioact. Mater. 4(2019) 8-16. |
[14] | N. Yang, N. Balasubramani, J. Venezuela, S. Almathami, C. Wen, M. Dargusch, Bioact. Mater. 6(2021) 1436-1451. |
[15] |
C.Z. Yao, Z.C. Wang, S.L. Tay, T.P. Zhu, W. Gao, J. Alloys Compd. 602(2014) 101-107.
DOI URL |
[16] |
X.W. Liu, J.K. Sun, Y.H. Yang, F.Y. Zhou, Z.J. Pu, L. Li, Y.F. Zheng, Mater. Lett. 162(2016) 242-245.
DOI URL |
[17] |
J. Kubasek, D. Vojtech, E. Jablonska, I. Pospisilova, J. Lipov, T. Ruml, Mater. Sci. Eng. C 58 (2016) 24-35.
DOI URL |
[18] |
M. Sikora-Jasinska, E. Mostaed, A. Mostaed, R. Beanland, D. Mantovani, M. Vedani, Mater. Sci. Eng. C 77 (2017) 1170-1181.
DOI URL |
[19] | C. Wang, Z.T. Yu, Y.J. Cui, Y.F. Zhang, S. Yu, G.Q. Qu, H.B. Gong, J. Mater. Sci 32(2016) 925-929. |
[20] |
S. Zhao, J.M. Seitz, R. Eifler, H.J. Maier, R.J. Guillory, E.J. Earley, A. Drelich, J. Goldman, J.W. Drelich, Mater. Sci. Eng. C 76 (2017) 301-312.
DOI URL |
[21] |
W. Bednarczyk, M. Watroba, J. Kawalko, P. Bala, Mater. Sci. Eng. A 748 (2019) 357-366.
DOI URL |
[22] |
K. Piela, M. Wrobel, K. Sztwiertnia, M. Jaskowski, J. Kawalko, M. Bieda, M. Kiper, A. Jarzebska, Mater. Des. 117(2017) 111-120.
DOI URL |
[23] |
W. Bednarczyk, J. Kawalko, M. Watroba, P. Bala, Mater. Sci. Eng. A 723 (2018) 126-133.
DOI URL |
[24] |
W. Bednarczyk, J. Kawalko, M. Watroba, N. Gao, M.J. Starink, P. Bala, T.G. Langdon, Mater. Sci. Eng. A 776 (2020), 139047.
DOI URL |
[25] |
W. Bednarczyk, M. Watroba, J. Kawalko, P. Bala, Mater. Sci. Eng. A 759 (2019) 55-58.
DOI URL |
[26] |
B. Srinivasarao, A.P. Zhilyaev, T.G. Langdon, M.T. Perez-Prado, Mater. Sci. Eng. A 562 (2013) 196-202.
DOI URL |
[27] |
S. Liu, D. Kent, H. Zhan, N. Doan, M. Dargusch, G. Wang, Mater. Sci. Eng. A 784 (2020), 139325.
DOI URL |
[28] |
K. Huang, R.E. Loge, Mater. Des. 111(2016) 548-574.
DOI URL |
[29] |
A.H. Feng, Z.Y. Ma, Acta Mater. 57(2009) 4248-4260.
DOI URL |
[30] |
S.G. Hong, S.H. Park, C.S. Lee, Acta Mater. 58(2010) 5873-5885.
DOI URL |
[31] |
K.D. Molodov, T. Al-Samman, D.A. Molodov, G. Gottstein, Acta Mater. 76(2014) 314-330.
DOI URL |
[32] |
M.W. Vaughan, W. Nasim, E. Dogan, J.S. Herrington, G. Proust, A.A. Benzerga, I. Karaman, Acta Mater. 168(2019) 448-472.
DOI |
[33] |
S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, H. Beladi, Mater. Sci. Eng. A 456 (2007) 52-57.
DOI URL |
[34] |
T. Al-Samman, G. Gottstein, Mater. Sci. Eng. A 490 (2008) 411-420.
DOI URL |
[35] |
M.M. Myshlyaev, H.J. McQueen, A. Mwembela, E. Konopleva, Mater. Sci. Eng. A 337 (2002) 121-133.
DOI URL |
[36] |
T. Al-Samman, X. Li, S.G. Chowdhury, Mater. Sci. Eng. A 527 (2010) 3450-3463.
DOI URL |
[37] |
A. Orozco-Caballero, D. Lunt, J.D. Robson, J.Q. da Fonseca, Acta Mater. 133(2017) 367-379.
DOI URL |
[38] |
A. Galiyev, R. Kaibyshev, G. Gottstein, Acta Mater. 49(2001) 1199-1207.
DOI URL |
[39] | C. Kienl, F.D. León-Cázares, C.M.F. Rae, Acta Mater. (2020), . |
[40] |
X. Liu, B.W. Zhu, C. Xie, J. Zhang, C.P. Tang, Y.Q. Chen, Mater. Sci. Eng. A 733 (2018) 98-107.
DOI URL |
[41] |
M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, B.H. Lu, Acta Mater. 157(2018) 53-71.
DOI URL |
[42] |
M.G. Jiang, H. Yan, R.S. Chen, J. Alloys Compd. 650(2015) 399-409.
DOI URL |
[43] |
Z. Zhang, M.P. Wang, Z. Li, N.A. Jiang, S.M. Hao, J. Gong, H.L. Hu, J. Alloys Compd. 509(2011) 5571-5580.
DOI URL |
[44] |
L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, S. Godet, Acta Mater. 55(2007) 3899-3910.
DOI URL |
[45] |
C.K. Yan, A.H. Feng, S.J. Qu, G.J. Cao, J.L. Sun, J. Shen, D.L. Chen, Acta Mater. 154(2018) 311-324.
DOI URL |
[46] |
Y. Wu, H.C. Kou, Z.H. Wu, B. Tang, J.S. Li, J. Alloys Compd. 749(2018) 844-852.
DOI URL |
[47] |
Z.R. Zhang, X.Y. Yang, Z.Y. Xiao, J. Wang, D.X. Zhang, C.M. Liu, T. Sakai, Mater. Des. 97(2016) 25-32.
DOI URL |
[48] |
J. Su, M. Sanjari, A.H. Kabir, I.H. Jung, S. Yue, Scr. Mater. 113(2016) 198-201.
DOI URL |
[49] |
I. Basu, T. Al-Samman, Acta Mater. 96(2015) 111-132.
DOI URL |
[50] | R. Kaibyshev, Woodhead Publ Mater, 2012, pp. 186-225. |
[51] |
M. Leonard, C. Moussa, A. Roatta, A. Seret, J.W. Signorelli, Mater. Sci. Eng. A 789 (2020), 139689.
DOI URL |
[52] |
K. Hagihara, T. Mayama, M. Honnami, M. Yamasaki, H. Izuno, T. Okamoto, T. Ohashi, T. Nakano, Y. Kawamura, Int. J. Plast. 77(2016) 174-191.
DOI URL |
[53] |
H. Li, Q.Q. Duan, X.W. Li, Z.F. Zhang, Mater. Sci. Eng. A 466 (2007) 38-46.
DOI URL |
[54] | F. Cardarelli, Materials Handbook, 2018, pp. 317-695. |
[55] |
M.H. Yoo, Metall. Trans. A 12 (3) (1981) 409-418.
DOI URL |
[56] |
M.H. Yoo, J.K. Lee, Philos. Mag. 63 (5) (1991) 987-1000.
DOI URL |
[57] |
H. Abdolvand, K. Louca, C. Mareau, M. Majkut, J. Wright, Acta Mater. 196(2020) 733-746.
DOI URL |
[58] |
M. Knezevic, M. Zecevic, I.J. Beyerlein, J.F. Bingert, R.J. McCabe, Acta Mater. 88(2015) 55-73.
DOI URL |
[59] |
D.W. Brown, I.J. Beyerlein, T.A. Sisneros, B. Clausen, C.N. Tome, Int. J. Plast. 29(2012) 120-135.
DOI URL |
[60] |
S. Jin, K. Marthinsen, Y.J. Li, Acta Mater. 120(2016) 403-414.
DOI URL |
[61] | S. Cheong, H. Weiland, Mater. Sci.Forum 558-559(2007) 153-158. |
[62] |
M. Kulakov, J.L. Huang, M. Ntovas, S. Moturu, Metall. Mater. Trans. A 51 (2020) 845-854.
DOI |
[63] |
C. Xie, J.M. He, B.W. Zhu, X. Liu, J. Zhang, X.F. Wang, X.D. Shu, Q.H. Fang, Int. J. Plasticity 111 (2018) 211-233.
DOI URL |
[64] |
T. Sakai, H. Miura, A. Goloborodko, O. Sitdikov, Acta Mater. 57(2009) 153-162.
DOI URL |
[65] |
E. Dogan, M.W. Vaughan, S.J. Wang, I. Karaman, G. Proust, Acta Mater. 89(2015) 408-422.
DOI URL |
[66] |
Y.B. Chun, M. Battaini, C.H.J. Davies, S.K. Hwang, Metall. Mater. Trans. A 41 (2010) 3473-3487.
DOI URL |
[67] |
M. Lentz, M. Risse, N. Schaefer, W. Reimers, I.J. Beyerlein, Nat. Commun. 7(2016) 11068.
DOI PMID |
[68] |
R. Kapoor, G.B. Reddy, A. Sarkar, Mater. Sci. Eng. A 718 (2018) 104-110.
DOI URL |
[69] | B. Zhu, X. Liu, C. Xie, J. Su, P.C. Guo, C.P. Tang, W.H. Liu, J. Mater. Sci 50(2020) 59-65. |
[70] |
N. Ishikawa, K. Yasuda, H. Sueyoshi, S. Endo, H. Ikeda, T. Morikawa, K. Higashida, Acta Mater. 97(2015) 257-268.
DOI URL |
[71] |
J.L. Sun, P.W. Trimby, F.K. Yan, X.Z. Liao, N.R. Tao, J.T. Wang, Scr. Mater. 69(2013) 428-431.
DOI URL |
[72] |
C.M. Cepeda-Jimenez, J.M. Molina-Aldareguia, M.T. Perez-Prado, Acta Mater. 84(2015) 443-456.
DOI URL |
[73] |
J. You, Y.J. Huang, C.M. Liu, H.Y. Zhan, L.X. Huang, G. Zeng, Materials 13 (2020) 2348.
DOI URL |
[74] |
I. Ulacia, N.V. Dudamell, F. Galvez, S. Yi, M.T. Perez-Prado I. Hurtado, Acta Mater. 58(2010) 2988-2998.
DOI URL |
[75] |
Q.M. Luan, T.B. Britton, T.S. Jun, Mater. Sci. Eng. A 734 (2018) 385-397.
DOI URL |
[76] |
S.G. Song, G.T. Gray, Metall. Mater. Trans. A 26 (1995) 2665-2675.
DOI URL |
[77] |
S.E. Ion, F.J. Humphreys, S.H. White, Acta Metall. Mater. 30(1982) 1909-1919.
DOI URL |
[78] |
E. Martin, J.J. Jonas, Acta Mater. 58(2010) 4253-4266.
DOI URL |
[79] |
S.A. Askariani, S.M.H. Pishbin, J. Alloys Compd. 688(2016) 1058-1065.
DOI URL |
[80] |
M. Mosayebi, A. Zarei-Hanzaki, H.R. Abedi, A. Barabi, M.S. Jalali, A. Ghaderi, M. Barnett, Mater. Charact. 163(2020), 110236.
DOI URL |
[81] |
D.K. Yang, P. Cizek, P.D. Hodgson, C.E. Wen, Acta Mater. 58(2010)4536-4548.
DOI URL |
[82] |
M. Wen, G. Liu, J.F. Gu, W.M. Guan, J. Lu, Appl. Surf. Sci. 255(2009) 6097-6102.
DOI URL |
[83] |
S.J. Laine, K.M. Knowles, P.J. Doorbar, R.D. Cutts, D. Rugg, Acta Mater. 123(2017) 350-361.
DOI URL |
[84] |
J.Z. Lu, U. Wu, G.F. Sun, K.Y. Luo, Y.K. Zhang, J. Cai, C.Y. Cui, X.M. Luo, Acta Mater. 127(2017) 252-266.
DOI URL |
[85] |
C. Wang, D. Yu, Z. Niu, W. Zhou, G. Chen, Z. Li, X. Fu, Acta Mater. 200(2020) 101-115.
DOI URL |
[86] |
P. Yi, R.C. Cammarata, M.L. Falk, Acta Mater. 105(2016) 378-389.
DOI URL |
[87] |
G.B. Liu, J. Zhang, G.Q. Xi, R.L. Zuo, S. Liu, Acta Mater. 141(2017) 1-9.
DOI URL |
[88] |
N. Stanford, M.R. Barnett, Int. J. Plast. 47(2013) 165-181.
DOI URL |
[89] |
A. Tehranchi, B. Yin, W.A. Curtin, Acta Mater. 151(2018) 56-66.
DOI URL |
[90] |
J.Y. Wang, N. Li, R. Alizadeh, M.A. Monclus, Y.W. Cui, J.M. Molina-Aldareguia J. LLorca, Acta Mater. 170(2019) 155-165.
DOI |
[1] | Yanying Hu, Huijie Liu, Dongrui Li. Contribution of ultrasonic to microstructure and mechanical properties of tilt probe penetrating friction stir welded joint [J]. J. Mater. Sci. Technol., 2021, 85(0): 205-217. |
[2] | Hyun Ji Kim, Sang-Cheol Jin, Jae-Gil Jung, Sung Hyuk Park. Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg-7Sn-1Al-1Zn alloy during low- and high-temperature extrusions [J]. J. Mater. Sci. Technol., 2021, 71(0): 87-97. |
[3] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[4] | Xiaobei Zang, Li Lingtong, Jiaxin Meng, Lijia Liu, Yuanyuan Pan, Qingguo Shao, Ning Cao. Enhanced zinc storage performance of mixed valent manganese oxide for flexible coaxial fiber zinc-ion battery by limited reduction control [J]. J. Mater. Sci. Technol., 2021, 74(0): 52-59. |
[5] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
[6] | Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 148-155. |
[7] | Peng Liu, Rui Zhang, Yong Yuan, Chuanyong Cui, Faguang Liang, Xi Liu, Yuefeng Gu, Yizhou Zhou, Xiaofeng Sun. Microstructural evolution of a Ni-Co based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Mater. Sci. Technol., 2021, 77(0): 66-81. |
[8] | Yunwei Gui, Yujie Cui, Huakang Bian, Quanan Li, Lingxiao Ouyang, Akihiko Chiba. Role of slip and {10-12} twin on the crystal plasticity in Mg-RE alloy during deformation process at room temperature [J]. J. Mater. Sci. Technol., 2021, 80(0): 279-296. |
[9] | L.Y. Zhao, H. Yan, R.S. Chen, En-Hou Han. Orientations of nuclei during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 162-167. |
[10] | Bingnan Qian, Jinyong Zhang, Yangyang Fu, Fan Sun, Yuan Wu, Jun Cheng, Philippe Vermaut, Frédéric Prima. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration [J]. J. Mater. Sci. Technol., 2021, 65(0): 228-237. |
[11] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
[12] | Abdul Malik, Yangwei Wang, Huanwu Cheng, Faisal Nazeer, Muhammad Abubaker Khan. Microstructure evolution of Mg-Zn-Zr magnesium alloy against soft steel core projectile [J]. J. Mater. Sci. Technol., 2021, 79(0): 46-61. |
[13] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[14] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[15] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||