J. Mater. Sci. Technol. ›› 2021, Vol. 95: 40-56.DOI: 10.1016/j.jmst.2021.03.069
• Research Article • Previous Articles Next Articles
Zihong Wanga,b, Xin Lina,b,*(
), Nan Kanga,b,*(
), Jing Chena,b, Hua Tana,b, Zhe Fenga,b, Zehao Qina,b, Haiou Yanga,b, Weidong Huanga,b
Received:2021-01-26
Revised:2021-03-09
Accepted:2021-03-17
Published:2021-12-30
Online:2021-05-24
Contact:
Xin Lin,Nan Kang
About author:nan.kang@nwpu.edu.cn (N. Kang).Zihong Wang, Xin Lin, Nan Kang, Jing Chen, Hua Tan, Zhe Feng, Zehao Qin, Haiou Yang, Weidong Huang. Laser powder bed fusion of high-strength Sc/Zr-modified Al-Mg alloy: phase selection, microstructural/mechanical heterogeneity, and tensile deformation behavior[J]. J. Mater. Sci. Technol., 2021, 95: 40-56.
| Sample condition | Mg | Sc | Zr | Mn | Fe | Si | Al |
|---|---|---|---|---|---|---|---|
| Powder | 4.66 | 0.72 | 0.33 | 0.48 | 0.12 | 0.03 | Bal. |
| L-PBF | 3.30 | 0.71 | 0.35 | 0.48 | 0.14 | 0.02 | Bal. |
Table 1 Chemical compositions of the powder material and the L-PBF-processed Al-Mg-Sc-Zr alloy (wt.%).
| Sample condition | Mg | Sc | Zr | Mn | Fe | Si | Al |
|---|---|---|---|---|---|---|---|
| Powder | 4.66 | 0.72 | 0.33 | 0.48 | 0.12 | 0.03 | Bal. |
| L-PBF | 3.30 | 0.71 | 0.35 | 0.48 | 0.14 | 0.02 | Bal. |
Fig. 2. The aging response of the L-PBF-processed Al-Mg-Sc-Zr alloy at 300, 325, 350, and 400°C (air cooling), the peak-aged condition (325°C/4 h) was marked as the red circle.
Fig. 3. One of the acquired DIC images (a), the geometry of the DIC specimen (b), the Gatan micro-tension tester (c), and the geometry of the in-situ tensile specimen (d), the tensile axis is parallel to the building direction, the unit of the dimensions in the tensile drawings is mm.
Fig. 4. Backscattered electron (BSE)-SEM images showing the heterogeneous microstructure (a, b); EBSD maps showing the heterogeneous grain structure (c), and {100} pole figures for the CG (d) and FG regions (d); grain size distribution of the equiaxed grains (e), and width distribution of the columnar grains (f). Building direction (BD) is indicated as the inset yellow arrow. The sample frame of reference for the pole figures is shown in (b), and Z is parallel to the BD.
| Location | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Mean ± SD |
|---|---|---|---|---|---|---|
| FG (α-Al matrix) | 0.52 | 0.47 | 0.45 | 0.50 | 0.51 | 0.49 ± 0.03 |
| CG (α-Al matrix) | 0.65 | 0.67 | 0.66 | 0.71 | 0.67 | 0.67 ± 0.02 |
Table 2 The Sc content in α-Al matrix for the marked points in FG and CG regions in Fig. 5 measured via STEM-EDS.
| Location | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Mean ± SD |
|---|---|---|---|---|---|---|
| FG (α-Al matrix) | 0.52 | 0.47 | 0.45 | 0.50 | 0.51 | 0.49 ± 0.03 |
| CG (α-Al matrix) | 0.65 | 0.67 | 0.66 | 0.71 | 0.67 | 0.67 ± 0.02 |
Fig. 6. BF-TEM image (a), SAD pattern (b), and HAADF-STEM image (c) taken along [001] zone axis in the CG region; BF-TEM image (d), SAD pattern (e), and HAADF-STEM image (f) taken along [001] zone axis in the FG region; the 001-type superlattice reflections marked by the red/purple arrows showing the secondary Al3(Sc,Zr) phase with L12 ordered structure; particle-size distributions for the secondary Al3(Sc,Zr) in the CG (g) and FG (h) regions.
Fig. 7. Engineering stress-strain curves (a) and the comparison between tensile properties of the L-PBF-processed Al-Mg(Mn)-Sc-Zr alloys and those of traditionally-made Al-Mg-Sc alloys, such as casting, CR, RS/PM, and those of 2 × × × and 7 × × × wrought Al alloys (b); the discontinuous yielding behavior with the definitions of ${{\sigma }_{\text{U}}}$, YS, Lüders elongation or YPE, and ${{\varepsilon }_{\text{L}}}$ (c); the $\text{ln}{{\sigma }_{\text{t}}}-\text{ln}{{\varepsilon }_{\text{t}}}$ curves and the fitting curves (d); the K, n in Holloman equation and the Lüders true stress (${{\sigma }_{\text{t}-\text{L}}}$) (e); the θ against the net flow stress ${{\sigma }_{\text{t}}}-{{\sigma }_{\text{t}-\text{L}}}$ curves (f).
| Material | Process | Condition | YS (MPa) | UTS (MPa) | ${{\varepsilon }_{\text{f}}}$ (%) | Refs |
|---|---|---|---|---|---|---|
| Al4.66Mg0.72Sc0.33Zr | L-PBF | As built | 325 ± 3 | 390 ± 2 | 24.9 ± 0.6 | - |
| Al4.66Mg0.72Sc0.33Zr | L-PBF | 325°C/4 h | 510 ± 2 | 531 ± 2 | 15.0 ± 0.3 | - |
| Al4Mg0.6Sc0.12Zr | Casting | 350°C/1 h | 164 ± 8 | 261 ± 11 | 9.3 | [ |
| Al5.8Mg0.25Sc0.lZr | Rolling | 325°C/1 h | 330 | 445 | 13 | [ |
| Al5Mg0.2Sc0.2Zr | RS/PM | As extruded | 575 | 593 | 7.03 | [ |
| 2024 | Wrought | T651 | 393 | 476 | 10 | [ |
| 7075 | Wrought | T651 | 503 | 572 | 11 | [ |
Table 3 Tensile properties of the L-PBF-processed Al-Mg-Sc-Zr alloy, traditionally made Al-Mg-Sc-Zr alloys, and typical high-strength wrought Al alloys.
| Material | Process | Condition | YS (MPa) | UTS (MPa) | ${{\varepsilon }_{\text{f}}}$ (%) | Refs |
|---|---|---|---|---|---|---|
| Al4.66Mg0.72Sc0.33Zr | L-PBF | As built | 325 ± 3 | 390 ± 2 | 24.9 ± 0.6 | - |
| Al4.66Mg0.72Sc0.33Zr | L-PBF | 325°C/4 h | 510 ± 2 | 531 ± 2 | 15.0 ± 0.3 | - |
| Al4Mg0.6Sc0.12Zr | Casting | 350°C/1 h | 164 ± 8 | 261 ± 11 | 9.3 | [ |
| Al5.8Mg0.25Sc0.lZr | Rolling | 325°C/1 h | 330 | 445 | 13 | [ |
| Al5Mg0.2Sc0.2Zr | RS/PM | As extruded | 575 | 593 | 7.03 | [ |
| 2024 | Wrought | T651 | 393 | 476 | 10 | [ |
| 7075 | Wrought | T651 | 503 | 572 | 11 | [ |
Fig. 8. Evolution of the full-field local strain during the tensile test of the as-built (a) and direct-aged (b) samples; the evolution of the maximum local strain (c) and the Lüders elongation stages were marked as the black/red rectangular boxes; the evolution of the normalized maximum local strain (d). The tensile axis is parallel to the building direction.
| Physical properties | Value |
|---|---|
| ⍴(Al3Sc) | 3.03 × 103 kg/m3 |
| a | 1 × 10-9 m |
| Sm(Al3Sc) | 42.2 J/(mol°C) |
| D0 | 2.29 × 10-7 m2/s |
| Q | 3.5 × 104 J/mol |
Table 4 Physical properties used during the modeling for the solidification precipitation behavior of the primary Al3Sc phase [47,49,50].
| Physical properties | Value |
|---|---|
| ⍴(Al3Sc) | 3.03 × 103 kg/m3 |
| a | 1 × 10-9 m |
| Sm(Al3Sc) | 42.2 J/(mol°C) |
| D0 | 2.29 × 10-7 m2/s |
| Q | 3.5 × 104 J/mol |
Fig. 9. Simulated temperature field (a); temperature-time dependency for the marked points located at the centerline of the molten pool (b), the historical characteristics of cooling rate during the solidification interval of the primary Al3Sc phase are presented as the inset figures; equilibrium phase diagram for Al-3.3Mg-0.48Mn-xSc (wt.%) alloy system calculated via Thermo-Calc software (c), the solidification temperature interval of primary Al3Sc is marked as the dotted line; the predicted critical condition for suppressing the nucleation of primary Al3Sc phase, and the correlated grain structure evolution paths (d).
Fig. 10. Microhardness maps showing the mechanical heterogeneity in the as-built (a) and direct-aged (c) samples; BSE images showing the typical indentations located in the FG and CG regions in the as-built (b) and direct-aged (d) samples. The building direction is indicated as the yellow arrows.
| Sample condition | FG | CG |
|---|---|---|
| As built | 122.3 ± 2.3 | 103.4 ± 6.8 |
| Direct aged | 174.9 ± 2.2 | 176.1 ± 3.2 |
Table 5 Microhardness (HV0.005) in the FG and CG regions in the as-built and direct-aged samples.
| Sample condition | FG | CG |
|---|---|---|
| As built | 122.3 ± 2.3 | 103.4 ± 6.8 |
| Direct aged | 174.9 ± 2.2 | 176.1 ± 3.2 |
Fig. 11. Optical micrograph showing the Lüders bands after tensile straining to 2% of an as-built tensile specimen (a), BF-TEM images showing the dislocation configurations in the FG and CG regions for the swept (b, d) and unswept (c, e) regions in the tensile specimen; the TEM images of columnar grains are taken near the <011> axis. The dislocations lines are indicated with the yellow arrows.
Fig. 12. Evolution of steady-state subgrain size (w) with true stress (σt), ${{w}_{\text{YS}}}$ is the estimated subgrain size with the σt corresponding to YS of the as-built sample.
Fig. 13. BSE images showing the deformed CG and FG regions with different load-line strains, and the load against load-line displacement curves for the as-built (a) and direct-aged samples (b); schematic illustrating the relationship between displacement and strain components (c); strain partitioning behavior between the CG and FG regions in the as-built (d) and direct-aged (e) samples during the in-situ tensile testing.
Fig. 14. (a) True stress-strain curves obtained via LUR tensile test; (b) the close-up view of the typical hysteresis loops taken from a part of (a), and the unloading/reloading yield point is defined as the point which has a 10% reduction in slope from the effective elastic modulus; (c) HDI stress versus true strain derived from the LUR hysteresis loops; (d) Ratio of HDI stress to true stress versus applied true strain.
Fig. 15. 3D reconstructions of the surface morphology for the in-situ tensile specimens, which show the features of deformation at the macroscale and molten-pool scale in the as-built (a-c) and direct-aged (d-f) specimens, the inset BSE image in (e) showing the planar slip characteristic in the direct-aged specimen.
| [1] |
T. Dursun, C. Soutis, Mater. Des. 56 (2014) 862-871.
DOI URL |
| [2] |
H. Abdizadeh, M. Ashuri, P.T. Moghadam, A. Nouribahadory, H.R. Baharvandi, Mater. Des. 32 (2011) 4417-4423.
DOI URL |
| [3] | H Heshmati, M Ketabchi, A Kalaki, M.T.M. Ashuri, Int.J. Cast Met. Res. 26 (2012) 100-104. |
| [4] |
T. Debroy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A.E. Wilsonheid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
| [5] |
J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
| [6] |
D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57 (2012) 133-164.
DOI URL |
| [7] | N.T. Aboulkhair, M. Simonelli, L. Parry, I.A. Ashcroft, C. Tuck, R.J.M. Hague, Prog.Mater. Sci. 106 (2019) 100578. |
| [8] |
H. Zhang, H. Zhu, T. Qi, Z. Hu, X. Zeng, Mater. Sci. Eng. A 656 (2016) 47-54.
DOI URL |
| [9] |
N. Kaufmann, M. Imran, T.M. Wischeropp, C. Emmelmann, S. Siddique, F. Walther, Phys. Procedia 83 (2016) 918-926.
DOI URL |
| [10] |
K.G. Prashanth, S. Scudino, J. Eckert, Acta Mater 126 (2017) 25-35.
DOI URL |
| [11] |
N.T. Aboulkhair, I. Maskery, C. Tuck, I.A. Ashcroft, N.M. Everitt, Mater. Sci. Eng. A 667 (2016) 139-146.
DOI URL |
| [12] | P. Mohammadpour, A. Plotkowski, A.B. Phillion, Addit. Manuf. 31 (2020) 100936. |
| [13] |
J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, U. Ramamurty, Acta Mater. 115 (2016) 285-294.
DOI URL |
| [14] |
X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, J.P. Kruth, Acta Mater. 129 (2017) 183-193.
DOI URL |
| [15] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
| [16] |
Y. Li, Y. Jia, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
| [17] |
K. Schmidtke, F. Palm, A. Hawkins, C. Emmelmann, Phys. Procedia 12 (2011) 369-374.
DOI URL |
| [18] |
J.R. Croteau, S. Griffiths, M.D. Rossell, C. Leinenbach, C. Kenel, V. Jansen, D.N. Seidman, D.C. Dunand, N.Q. Vo, Acta Mater. 153 (2018) 35-44.
DOI URL |
| [19] | Q. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A. Huang, M. Weyland, L. Bourgeois, X. Wu, Acta Mater. (2019) 108-118. |
| [20] |
H. Zhang, H. Zhu, X. Nie, J. Yin, Z. Hu, X. Zeng, Scr. Mater. 134 (2017) 6-10.
DOI URL |
| [21] |
L. Zhou, H. Pan, H. Hyer, S. Park, Y.L. Bai, B. Mcwilliam, K. Cho, Y. Sohn, Scr. Mater. 158 (2019) 24-28.
DOI URL |
| [22] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365-369.
DOI URL |
| [23] |
Y.M. Wang, M. Chen, F. Zhou, E. Ma, Nature 419 (2002) 912-915.
DOI URL |
| [24] |
K. Lu, Science 345 (2014) 1455-1456.
DOI PMID |
| [25] |
X. Wu, M. Yang, F. Yuan, G. Wu, Y. Zhu, Proc. Natl. Acad. Sci. USA 112 (2015) 14501-14505.
DOI URL |
| [26] |
H.K. Park, K. Ameyama, J. Yoo, H. Hwang, H.S. Kim, Mater. Res. Lett. 6 (2018) 261-267.
DOI URL |
| [27] |
E. Ma, T. Zhu, Mater. Today 20 (2017) 323-331.
DOI URL |
| [28] |
X. Wu, Y.T. Zhu, Mater. Res. Lett. 5 (2017) 527-532.
DOI URL |
| [29] |
X. Feaugas, Acta Mater. 47 (1999) 3617-3632.
DOI URL |
| [30] | M.F. Ashby, Philos. Mag. 21 (1970) 399-424. |
| [31] |
M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Mater. Res. Lett. 4 (2016) 145-151.
DOI URL |
| [32] |
Y. Zhu, X. Wu, Mater. Res. Lett. 7 (2019) 393-398.
DOI URL |
| [33] | Y. Zhou, G.H. Wu, Analysis Methods in Materials Science: X-ray Diffraction and Electron Microscopy in Materials Science, second ed., Harbin Institute of Tech-nology Press, Harbin, 2007. |
| [34] | Metallic materials-Tensile testing-Part 1: Method of test at room temperature, ISO 6892-1:2009. |
| [35] |
M. Chiumenti, X. Lin, M. Cervera, W. Lei, Y. Zheng, W. Huang, Rapid Prototyp. J. 23 (2017) 448-463.
DOI URL |
| [36] |
A.B. Spierings, K. Dawson, T. Heeling, P.J. Uggowitzer, R. Schaublin, F. Palm, K. Wegener, Mater. Des. 115 (2017) 52-63.
DOI URL |
| [37] |
E. dos S. Magalhaes, C.P. da Silva, A.L.F.L. e Silva, S.M.M.L. e Silva, Int. J. Numer. Methods Heat Fluid Flow 27 (2017) 561-574.
DOI URL |
| [38] |
L. Thijs, K. Kempen, J. Kruth, J. Van Humbeeck, Acta Mater. 61 (2013) 1809-1819.
DOI URL |
| [39] |
Y. Huang, T.G. Langdon, Mater. Today 16 (2013) 85-93.
DOI URL |
| [40] |
S. Ge, M. Celikin, M. Isac, R.I.L. Guthrie, Metall. Mater. Trans. B 46 (2015) 1035-1043.
DOI URL |
| [41] |
S. Lathabai, P.G. Lloyd, Acta Mater. 50 (2002) 4275-4292.
DOI URL |
| [42] |
Y.A. Filatov, V. Yelagin, V. Zakharov, Mater. Sci. Eng. A 280 (2000) 97-101.
DOI URL |
| [43] | T.J. Harrell, The Influence of Sc and Zr Additions on the Microstructure and Mechanical Behavior of Ultrafine Grained Al-Mg Alloys Processed by Powder Metallurgy, PhD Dissertation, 2014. |
| [44] | Z. Wang, in: Wrought Aluminum Alloy and the Heat Treatment Process Cen-tral South University Press Changsha, 2011, pp. 116-164. 272-327. |
| [45] | J.H. Hollomon, Trans. AIME 162 (1945) 223-249. |
| [46] |
N. Tsuchida, Y. Tomota, K. Nagai, K. Fukaura, Scr. Mater. 54 (2006) 57-60.
DOI URL |
| [47] |
Y. Harada, D.C. Dunand, Mater. Sci. Eng. A 329-331 (2016) 686-695.
DOI URL |
| [48] |
G. Shao, P. Tsakiropoulos, Acta Metall. Mater. 42 (1994) 2937-2942.
DOI URL |
| [49] |
M. Gremaud, M. Carrard, W. Kurz, Acta Metall. Mater. 38 (1990) 2587-2599.
DOI URL |
| [50] | A.B. Shubin, K.Y. Shunyaev, T.V. Kulikova, Russ. Metall. 5 (2008) 364-369. |
| [51] |
S. Griffiths, M.D. Rossell, J.R. Croteau, N.Q. Vo, D.C. Dunand, C. Leinenbach, Mater. Charact. 143 (2018) 34-42.
DOI URL |
| [52] |
N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, S. Babu, Acta Mater. 112 (2016) 303-314.
DOI URL |
| [53] |
M. Gäumann, C. Bezencon, P. Canalis, W. Kurz, Acta Mater. 49 (2001) 1051-1062.
DOI URL |
| [54] |
D. Turnbull, B. Vonnegut, Ind. Eng. Chem. 44 (1952) 1292-1298.
DOI URL |
| [55] |
K.E. Knipling, D.C. Dunand, D.N. Seidman, Z Metallkd 97 (2006) 246-265.
DOI URL |
| [56] | J. Røyset, N. Ryum, Scand. Alumin. Alloys Int.Mater. Rev. 50 (2005) 19-44. |
| [57] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
| [58] |
N. Kumar, R. Mishra, Mater. Sci. Eng. A 580 (2013) 175-183.
DOI URL |
| [59] |
J.F. Hallai, S. Kyriakides, Int. J. Plast. 47 (2013) 1-12.
DOI URL |
| [60] |
S.D. Antolovich, R.W. Armstrong, Prog. Mater. Sci. 59 (2014) 1-160.
DOI URL |
| [61] |
Y.Z. Tian, S. Gao, L.J. Zhao, S. Lu, R. Pippan, Z.F. Zhang, N. Tsuji, Scr. Mater. 142 (2018) 88-91.
DOI URL |
| [62] |
D.J. Lloyd, S.A. Court, K.M. Gatenby, Mater. Sci. Technol. 13 (1997) 660-666.
DOI URL |
| [63] |
H. Jin, D.J. Lloyd, Metall. Trans. A 35 (2004) 997-1006.
DOI URL |
| [64] |
C.Y. Yu, P.W. Kao, C.P. Chang, Acta Mater. 53 (2005) 4019-4028.
DOI URL |
| [65] |
D.J. Lloyd, H. Jin, Mater. Sci. Eng. A 585 (2013) 455-459.
DOI URL |
| [66] |
N. Kumar, R.S. Mishra, C.S. Huskamp, K.K. Sankaran, Scr. Mater. 64 (2011) 576-579.
DOI URL |
| [67] |
R. Kapoor, J. Singh, J. Chakravartty, Mater. Sci. Eng. A 496 (2008) 308-315.
DOI URL |
| [68] |
K.L. Kendig, D.B. Miracle, Acta Mater. 50 (2002) 4165-4175.
DOI URL |
| [69] |
G.R. Cui, Z.Y. Ma, S.X. Li, Acta Mater. 57 (2009) 5718-5729.
DOI URL |
| [70] |
H. Jin, D.J. Lloyd, Scr. Mater. 50 (10) (2004) 1319-1323.
DOI URL |
| [71] |
V. Gerold, H.P. Karnthaler, Acta Metall. 37 (1989) 2177-2183.
DOI URL |
| [1] | Hongyu Chen, Dongdong Gu, Liang Deng, Tiwen Lu, Uta Kühn, Konrad Kosiba. Laser additive manufactured high-performance Fe-based composites with unique strengthening structure [J]. J. Mater. Sci. Technol., 2021, 89(0): 242-252. |
| [2] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
| [3] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
| [4] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
| [5] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
| [6] | A.N.M. Tanvir, Md. R.U. Ahsan, Gijeong Seo, Brian Bates, Chanho Lee, Peter K. Liaw, Mark Noakes, Andrzej Nycz, Changwook Ji, Duck Bong Kim. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 67(0): 80-94. |
| [7] | Mingxiang Liu, Changjiang Song, Zhenshan Cui. Crystallographic texture evolution and martensite transformation in the strain hardening process of a ferrite-based low density steel [J]. J. Mater. Sci. Technol., 2021, 78(0): 247-259. |
| [8] | Li Sun, Xiaobo Ren, Jianying He, Zhiliang Zhang. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 67(0): 11-22. |
| [9] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
| [10] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
| [11] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
| [12] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
| [13] | Shangcheng Zhou, Yao-Jian Liang, Yichao Zhu, Benpeng Wang, Lu Wang, Yunfei Xue. Ultrashort-time liquid phase sintering of high-performance fine-grain tungsten heavy alloys by laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 90(0): 30-36. |
| [14] | Chuan Guo, Yang Zhou, Xinggang Li, Xiaogang Hu, Zhen Xu, Enjie Dong, Qiang Zhu, R. Mark Ward. A comparing study of defect generation in IN738LC superalloy fabricated by laser powder bed fusion: Continuous-wave mode versus pulsed-wave mode [J]. J. Mater. Sci. Technol., 2021, 90(0): 45-57. |
| [15] | Wenqi Zhang, Hailong Liao, Zhiheng Hu, Shasha Zhang, Baijin Chen, Huanqing Yang, Yun Wang, Haihong Zhu. Interfacial characteristics and mechanical properties of additive manufacturing martensite stainless steel on the Cu-Cr alloy substrate by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 90(0): 121-132. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
