J. Mater. Sci. Technol. ›› 2021, Vol. 90: 121-132.DOI: 10.1016/j.jmst.2021.03.008
• Research Article • Previous Articles Next Articles
Wenqi Zhanga, Hailong Liaoa, Zhiheng Hua, Shasha Zhanga, Baijin Chenb,*(
), Huanqing Yangc, Yun Wangc, Haihong Zhua
Received:2020-09-15
Revised:2021-03-03
Accepted:2021-03-22
Published:2021-11-05
Online:2021-11-05
Contact:
Baijin Chen
About author:* E-mail address: chenbaijin@mail.hust.edu.cn (B. Chen).Wenqi Zhang, Hailong Liao, Zhiheng Hu, Shasha Zhang, Baijin Chen, Huanqing Yang, Yun Wang, Haihong Zhu. Interfacial characteristics and mechanical properties of additive manufacturing martensite stainless steel on the Cu-Cr alloy substrate by directed energy deposition[J]. J. Mater. Sci. Technol., 2021, 90: 121-132.
| Elements | C | Cr | Ni | Mo | Fe |
|---|---|---|---|---|---|
| wt.% | 0.05-0.08 | 13.5-15.00 | 5.20-5.70 | 0.80-1.00 | balance |
Table 1 Chemical compositions of the starting powder.
| Elements | C | Cr | Ni | Mo | Fe |
|---|---|---|---|---|---|
| wt.% | 0.05-0.08 | 13.5-15.00 | 5.20-5.70 | 0.80-1.00 | balance |
| Parameters | Cu | Fe |
|---|---|---|
| Density (kg·m-3) | 8900 | 7780 |
| Melting point (K) | 1358 | 1811 |
| Thermal conductivity (W·m-1·K-1) | 400 | 80 |
| Thermal expansion coefficient (10-5 K-1) | 1.67 | 1.23 |
| Laser beam absorptivity [ | 0.02 ~ 0.2 | 0.2 ~ 0.6 |
Table 2 Thermophysical properties of Cu and Fe at room temperature [6, 32].
| Parameters | Cu | Fe |
|---|---|---|
| Density (kg·m-3) | 8900 | 7780 |
| Melting point (K) | 1358 | 1811 |
| Thermal conductivity (W·m-1·K-1) | 400 | 80 |
| Thermal expansion coefficient (10-5 K-1) | 1.67 | 1.23 |
| Laser beam absorptivity [ | 0.02 ~ 0.2 | 0.2 ~ 0.6 |
| Parameters | Values |
|---|---|
| Laser power (P, kW) Scanning velocity (V, mm/min) Hatching space (H, mm) Powder feeding rate (g/min) Z-axis increment (mm) Laser spot diameter (mm) | 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 800 0.3 12 0.3 1 |
Table 3 Processing parameters used for the Cu-Cr substrate.
| Parameters | Values |
|---|---|
| Laser power (P, kW) Scanning velocity (V, mm/min) Hatching space (H, mm) Powder feeding rate (g/min) Z-axis increment (mm) Laser spot diameter (mm) | 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 800 0.3 12 0.3 1 |
| Parameters | Values |
|---|---|
| Laser power (P, kW) Scanning velocity (V, mm/min) Hatching space (H, mm) Powder feeding rate(g/min) Z-axis increment (mm) Laser spot diameter (mm) | 1.5 1000 0.4 12 0.3 1 |
Table 4 Processing parameters used for the steel substrate.
| Parameters | Values |
|---|---|
| Laser power (P, kW) Scanning velocity (V, mm/min) Hatching space (H, mm) Powder feeding rate(g/min) Z-axis increment (mm) Laser spot diameter (mm) | 1.5 1000 0.4 12 0.3 1 |
Fig. 3. Details of the DED (Directed energy deposition) experiments: (a) schematic of the copper/steel bimetal specimen fabrication and the cross-section specimen; (b) configuration of the horizontally combined bimetal tensile specimens; (c) configuration of the vertically combined bimetal tensile specimens; (d) dimension feature of the tensile specimen.
Fig. 4. OM images of the cross-section of the one-layer copper/steel specimens at different laser power of (I-1) 2000 W, (I-2) 2500 W, (I-3) 3000 W, (I-4) 3500 W, (I-5) 4000 W, and (I-6) 4500 W.
Fig. 5. OM images of the cross-section of the two-layer copper/steel specimens at different laser powers of (II-1) 2500 W, (II-2) 3000 W, (II-3) 3500 W, and (II-4) 4000 W.
Fig. 6. OM images of the cross-section of the five-layer copper/steel specimens at different laser powers of (V-1) 2500 W, (V-2) 3000 W, (V-3) 3500 W, (V-4a) 4000 W at the bottom area, and (V-4b) 4000 W at the top area.
Fig. 7. The cross-section microstructures of the specimen II-3 (P = 3500 W): (a) Low-magnification SEM overview of the interface, (b) zoom-in image of the columnar grain corresponding to region b marked in (a), and (c) zoom-in image of the crack morphology corresponding to region c marked in (b).
Fig. 9. Quantitative chemical maps of the copper/steel interface by EPMA: (a) specimen II-2 (P = 3000 W), (b) specimen II-3 (P = 3500 W), (c) specimen II-4 (P = 4000 W).
Fig. 11. Schematic diagram of the formation mechanism of the DED fabricated copper/steel interface: (a1-a3) specimen II-2 (P = 3000 W), (b1-b3) specimen II-3 (P = 3500 W), and (c1-c3) specimen II-4 (P = 4000 W).
| Parameters | Specimen V-2 and LX-2 | |
|---|---|---|
| 1 - 2 layer | 3rd layer and above | |
| Laser power (P, kW) Scanning velocity (V, mm/min) Hatching space (H, mm) Powder feeding rate (g/min) Z-axis increment (mm) Laser spot diameter (mm) | 3.0 800 0.3 12 0.3 1.0 | 1.5 1000 0.4 12 0.3 1.0 |
Table 5 The processing parameters for fabricating steel on the Cu-Cr substrate with multilayers.
| Parameters | Specimen V-2 and LX-2 | |
|---|---|---|
| 1 - 2 layer | 3rd layer and above | |
| Laser power (P, kW) Scanning velocity (V, mm/min) Hatching space (H, mm) Powder feeding rate (g/min) Z-axis increment (mm) Laser spot diameter (mm) | 3.0 800 0.3 12 0.3 1.0 | 1.5 1000 0.4 12 0.3 1.0 |
Fig. 13. Stress-strain curves of tensile specimens: (a) vertically combined crack-free copper/steel bimetal (specimen LX-2); (b) Cu-Cr alloy substrate; (c) horizontally combined crack-free copper/steel bimetal (specimen V-2); (d) DED fabricated steel on the Cu-Cr substrate.
Fig. 14. SEM images showing the fracture morphologies of the horizontally combined copper/steel bimetal (specimen V-2): (a) steel side; (b) copper/steel interface; (c) copper side.
| [1] |
S.S. Zhang, H.H. Zhu, Z.H. Hu, X.Y. Zeng, F. Zhong, Powder Technol. 342 (2019) 613-620.
DOI URL |
| [2] |
Z. Tan, X.Y. Zhang, Z.L. Zhou, Z. Zhou, Y. Yang, X.Y. Guo, Z.J. Wang, X. Wu, G.H. Wang, D.Y. He, J. Alloy Compd. 787 (2019) 903-908.
DOI URL |
| [3] |
S.D. Jadhav, S. Dadbakhsh, L. Goossens, J.P. Kruth, J. Van Humbeeck, K. Van- meensel, J.Mater. Process. Tech. 270 (2019) 47-58.
DOI |
| [4] |
Y.H. Chen, S.B. Ren, Y. Zhao, X.H. Qu, J. Alloy Compd. 786 (2019) 189-197.
DOI URL |
| [5] |
A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Mater. Lett. 179 (2016) 38-41.
DOI URL |
| [6] |
M. Velu, S. Bhat, Mater. Des. 47 (2013) 793-809.
DOI URL |
| [7] | N. Switzner, H. Queiroz, J. Duerst, Z. Yu, Mat. Sci. Eng. Struct. 709 (2018) 55-64. |
| [8] |
G.R. Joshi, V.J. Badheka, Metallogr. Microstruct. Anal. 6 (6) (2017) 470-480.
DOI URL |
| [9] |
J. Kar, S.K. Roy, G.G. Roy, J. Mater. Process. Tech. 233 (2016) 174-185.
DOI URL |
| [10] |
K.Y. Chen, C. Wang, Q.F. Hong, S.F. Wen, Y. Zhou, C.Z. Yan, Y.S. Shi, J. Mater. Process. Tech. 283 (2020) 116701.
DOI URL |
| [11] | J. Chen, Y.Q. Yang, C.H. Song, D. Wang, S.B. Wu, M.K. Zhang, Mat. Sci. Eng. Struct. 792 (2020) 139316. |
| [12] |
M.K. Zhang, Y.Q. Yang, D. Wang, C.H. Song, J. Chen, Mater. Des. 165 (2019) 107583.
DOI URL |
| [13] | C. Wei, Z. Sun, Q. Chen, Z. Liu, L. Li, J. Manuf. Sci. E-T Asme. 141 (8) (2019) 1-14. |
| [14] | M.K. Imran, S.H. Masood, M. Brandt, S. Bhattacharya, J. Mazumder, Mat. Sci. Eng. Struct. 528 (9) (2011) 3342-3349. |
| [15] | M. Yang, H.H. Ma, Z.W. Shen, Z.C. Huang, Q.C. Tian, J. Tian, Mater. Des. (2020) 186. |
| [16] |
Y.C. Bai, J.Y. Zhang, C.L. Zhao, C.J. Li, H. Wang, Mater. Charact. 167 (2020) 110489.
DOI URL |
| [17] |
C.L. Tan, K.S. Zhou, W.Y. Ma, L. Min, Mater. Des. 155 (2018) 77-85.
DOI URL |
| [18] |
M.K. Imran, S.H. Masood, M. Brandt, Lasers Manuf. Mater. Process. 2 (4) (2015) 242-260.
DOI URL |
| [19] |
H.H. Zhu, L. Lu, J.Y.H. Fuh, C.C. Wu, Mater. Des. 27 (2) (2006) 166-170.
DOI URL |
| [20] |
Z.H. Hu, H.H. Zhu, C.C. Zhang, H. Zhang, T. Qi, X.Y. Zeng, Mater. Des. 139 (2018) 304-313.
DOI URL |
| [21] |
P. Barriobero-Vila, K. Artzt, A. Stark, N. Schell, M. Siggel, J. Gussone, J. Kleinert, W. Kitsche, G. Requena, J. Haubrich, Scr. Mater. 182 (2020) 48-52.
DOI URL |
| [22] |
Z.Y. Zhao, P.K. Bai, R.D.K. Misra, M.Y. Dong, R.G. Guan, Y.J. Li, J.X. Zhang, L. Tan, J.F. Gao, T. Ding, W.B. Du, Z.H. Guo, J. Alloy Compd. 792 (2019) 203-214.
DOI URL |
| [23] | S. Uchida, T. Kimura, T. Nakamoto, T. Ozaki, T. Miki, M. Takemura, Y. Oka, R. Tsubota, Mater. Des. (2019) 175. |
| [24] |
Z.H. Liu, D.Q. Zhang, S.L. Sing, C.K. Chua, L.E. Loh, Mater. Charact. 94 (2014) 116-125.
DOI URL |
| [25] | J. Chen, Y.Q. Yang, C.H. Song, M.K. Zhang, S.B. Wu, D. Wang, Mat. Sci. Eng. Struct. 752 (2019) 75-85. |
| [26] |
O.M. Al-Jamal, S. Hinduja, L. Li, CIRP Ann. Manuf. Tech. 57 (1) (2008) 239-242.
DOI URL |
| [27] | M.K. Imran, S.H. Masood, M. Brandt, World Cong. Eng. Iii2010 (2010) 2213-2218 Wce. |
| [28] |
Y.Q. Fu, N. Kang, H.L. Liao, Y. Gao, C. Coddet, Intermetallics 86 (2017) 51-58.
DOI URL |
| [29] |
H. Liu, J.B. Hao, Z.T. Han, G. Yu, X.L. He, H.F. Yang, J. Mater. Process. Tech. 232 (2016) 153-164.
DOI URL |
| [30] |
D.Z. Wang, Q.W. Hu, X.Y. Zeng, Surf. Coat. Tech. 274 (2015) 51-59.
DOI URL |
| [31] |
M.M. Ma, Z.M. Wang, D.Z. Wang, X.Y. Zeng, Opt. Laser Technol. 45 (2013) 209-216.
DOI URL |
| [32] | J.F. Ready, D.F. Farson, T. Feeley, USA, 2001. |
| [33] | C. Wei, H. Gu, Q. Li, Z. Sun, Additive Manu- facturing, 2020. |
| [34] | Z. Sun, Y.-.H. Chueh, L. Li, Addit. Manuf. (2020) 35. |
| [35] |
M. Gaumann, C. Bezencon, P. Canalis, W. Kurz, Acta Mater. 49 (6) (2001) 1051-1062.
DOI URL |
| [36] |
C. Tan, Y. Chew, G. Bi, D. Wang, W. Ma, Y. Yang, K. Zhou, J. Mater. Sci. Technol. 72 (2021) 217-222.
DOI URL |
| [37] | Y. Qi, H. Zhang, X.J. Nie, Z.H. Hu, H.H. Zhu, X.Y. Zeng, Addit. Manuf. 35 (2020) 101346. |
| [38] |
N.J. Harrison, I. Todd, K. Mumtaz, Acta Mater. 94 (2015) 59-68.
DOI URL |
| [39] |
S. Kou, Acta Mater. 88 (2015) 366-374.
DOI URL |
| [40] |
T. Mukherjee, V. Manvatkar, A. De, T. Debroy, Scr. Mater. 127 (2017) 79-83.
DOI URL |
| [41] |
S.C. Liu, J.C. Jie, Z.K. Guo, G.M. Yin, T.M. Wang, T.J. Li, J. Alloy Compd. 742 (2018) 99-106.
DOI URL |
| [42] | G. Phanikumar, S. Manjini, P. Dutta, J. Mazumder, K. Chattopadhyay, Metall. Mater. Trans. A 36a (8) (2005) 2137-2147. |
| [43] |
J. He, J.Z. Zhao, L. Ratke, Acta Mater. 54 (7) (2006) 1749-1757.
DOI URL |
| [44] |
X.Q. Dai, M. Xie, S.F. Zhou, C.X. Wang, M.H. Gu, J.X. Yang, Z.Y. Li, J. Alloy Compd. 740 (2018) 194-202.
DOI URL |
| [45] |
S.F. Zhou, X.Q. Dai, M. Xie, S.Z. Zhao, T.B. Sercombe, J. Alloy Compd. 741 (2018) 4 82-4 88.
DOI URL |
| [46] |
B. AlMangour, D. Grzesiak, J. Cheng, Y. Ertas, J. Mater. Process. Tech. 257 (2018) 288-301.
DOI URL |
| [47] | ASM Handbook: Vol. 3 Alloy Phase Diagrams, 1992. |
| [48] |
S.H. Chen, J.H. Huang, J. Xia, X.K. Zhao, S.B. Lin, J. Mater. Process. Tech. 222 (2015) 43-51.
DOI URL |
| [49] |
S.S. Zhang, H.H. Zhu, L. Zhang, W.Q. Zhang, H.Q. Yang, X.Y. Zeng, J. Alloy Compd. 800 (2019) 286-293.
DOI URL |
| [1] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
| [2] | Y.M. Ren, X. Lin, H.O. Yang, H. Tan, J. Chen, Z.Y. Jian, J.Q. Li, W.D. Huang. Microstructural features of Ti-6Al-4V manufactured via high power laser directed energy deposition under low-cycle fatigue [J]. J. Mater. Sci. Technol., 2021, 83(0): 18-33. |
| [3] | Mingyue Wen, Yuan Sun, Jinjiang Yu, Shulin Yang, Xingyu Hou, Yanhong Yang, Xiaofeng Sun, YiZhou Zhou. Amelioration of weld-crack resistance of the M951 superalloy by engineering grain boundaries [J]. J. Mater. Sci. Technol., 2021, 78(0): 260-267. |
| [4] | Dan Liu, Daoxin Liu, Mario Guagliano, Xingchen Xu, Kaifa Fan, Sara Bagherifard. Contribution of ultrasonic surface rolling process to the fatigue properties of TB8 alloy with body-centered cubic structure [J]. J. Mater. Sci. Technol., 2021, 61(0): 63-74. |
| [5] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
| [6] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
| [7] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
| [8] | A.N.M. Tanvir, Md. R.U. Ahsan, Gijeong Seo, Brian Bates, Chanho Lee, Peter K. Liaw, Mark Noakes, Andrzej Nycz, Changwook Ji, Duck Bong Kim. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 67(0): 80-94. |
| [9] | Hailin Yang, Yingying Zhang, Jianying Wang, Zhilin Liu, Chunhui Liu, Shouxun Ji. Additive manufacturing of a high strength Al-5Mg2Si-2Mg alloy: Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 91(0): 215-223. |
| [10] | H.L. Wei, F.Q. Liu, L. Wei, T.T. Liu, W.H. Liao. Multiscale and multiphysics explorations of the transient deposition processes and additive characteristics during laser 3D printing [J]. J. Mater. Sci. Technol., 2021, 77(0): 196-208. |
| [11] | Y. Chew, Z.G. Zhu, F Weng, S.B. Gao, F.L. Ng, B.Y Lee, G.J. Bi. Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe49.5Mn30Co10Cr10C0.5 multicomponent alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 38-46. |
| [12] | Li Sun, Xiaobo Ren, Jianying He, Zhiliang Zhang. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 67(0): 11-22. |
| [13] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
| [14] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
| [15] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
