J. Mater. Sci. Technol. ›› 2021, Vol. 77: 196-208.DOI: 10.1016/j.jmst.2020.11.032
• Research Article • Previous Articles Next Articles
H.L. Weia,*(), F.Q. Liua, L. Weib, T.T. Liua, W.H. Liaoa(
)
Received:
2020-09-08
Revised:
2020-11-01
Accepted:
2020-11-01
Published:
2021-06-30
Online:
2020-11-22
Contact:
H.L. Wei,W.H. Liao
About author:
cnwho@njust.edu.cn (W.H. Liao).H.L. Wei, F.Q. Liu, L. Wei, T.T. Liu, W.H. Liao. Multiscale and multiphysics explorations of the transient deposition processes and additive characteristics during laser 3D printing[J]. J. Mater. Sci. Technol., 2021, 77: 196-208.
Fig. 1. Schematic illustration of the dynamic mesh distribution during multi-layer and multi-track laser DED. (a) Scanning strategy for the five-layer and six-track deposition process. (b) the 1 st track of the 1 st layer, (c) the 6th track of the 1 st layer, (d) the 6th track of the 5th layer.
Case No. | Laser Power (W) | Scanning Speed (mm/s) | Powder Feed Rate (g/min) | Hatch Spacing (mm) | Quantity of Layers | Quantity of Tracks |
---|---|---|---|---|---|---|
1 | 1800 | 5 | 20 | 2 | 5 | 30 |
2 | 1800 | 5 | 20 | 3 | 5 | 30 |
3 | 1800 | 5 | 20 | 4.2 | 5 | 30 |
4 | 1800 | 5 | 20 | 2 | 20 | 120 |
5 | 1800 | 5 | 20 | 3 | 20 | 120 |
6 | 1800 | 5 | 20 | 4.2 | 20 | 120 |
Table 1. Process parameters of the laser DED cases.
Case No. | Laser Power (W) | Scanning Speed (mm/s) | Powder Feed Rate (g/min) | Hatch Spacing (mm) | Quantity of Layers | Quantity of Tracks |
---|---|---|---|---|---|---|
1 | 1800 | 5 | 20 | 2 | 5 | 30 |
2 | 1800 | 5 | 20 | 3 | 5 | 30 |
3 | 1800 | 5 | 20 | 4.2 | 5 | 30 |
4 | 1800 | 5 | 20 | 2 | 20 | 120 |
5 | 1800 | 5 | 20 | 3 | 20 | 120 |
6 | 1800 | 5 | 20 | 4.2 | 20 | 120 |
Name | Ti-6Al-4V | Ti |
---|---|---|
Density (kg m-3 ) | 4000 | - |
Solidus temperature (K) | 1878 | - |
Liquidus temperature (K) | 1928 | - |
Latent heat of fusion (m2 s-2 ) | 2.85×105 | - |
Thermal conductivity of solid (W m-1 K-1 ) | 1.57 + 2.9 × 10-2T - 7 × 10-6T2 | 25 |
Thermal conductivity of liquid (W m-1 K-1 ) | 33 | 31 |
Specific heat of solid (J kg-1 K-1 ) | 512.4 + 0.15 T - 1 × 10-6T2 | 760 |
Specific heat of liquid (J kg-1 K-1 ) | 825 | 783 |
Viscosity (kg m-1 s-1 ) | 4×10-3 | 4×10-3 |
dσ/dT (N m-1 K-1 ) | -0.26×10-3 | - |
Table 2. Thermophysical properties of the substrate and metal powders [14,38].
Name | Ti-6Al-4V | Ti |
---|---|---|
Density (kg m-3 ) | 4000 | - |
Solidus temperature (K) | 1878 | - |
Liquidus temperature (K) | 1928 | - |
Latent heat of fusion (m2 s-2 ) | 2.85×105 | - |
Thermal conductivity of solid (W m-1 K-1 ) | 1.57 + 2.9 × 10-2T - 7 × 10-6T2 | 25 |
Thermal conductivity of liquid (W m-1 K-1 ) | 33 | 31 |
Specific heat of solid (J kg-1 K-1 ) | 512.4 + 0.15 T - 1 × 10-6T2 | 760 |
Specific heat of liquid (J kg-1 K-1 ) | 825 | 783 |
Viscosity (kg m-1 s-1 ) | 4×10-3 | 4×10-3 |
dσ/dT (N m-1 K-1 ) | -0.26×10-3 | - |
Fig. 5. Transverse sections of the five-layer and six-track builds at the mid-length of the build depicting the net increments at the bottom of each track: (a) hatch spacing of 2 mm, (b) hatch spacing of 3 mm, (c) hatch spacing of 4.2 mm.
Fig. 6. Transverse sections of the five-layer and six-track builds at the mid-length of the build depicting the net increments on the top of each track: (a) hatch spacing of 2 mm, (b) hatch spacing of 3 mm, (c) hatch spacing of 4.2 mm.
Fig. 11. Transverse sections of individual tracks showing the progressive deposition of multiple layers with hatch spacing of 2 mm. (a)-(c) net increments on the top of each track, (d)-(f) progressive updates at the bottom of each track.
Fig. 12. Transverse sections of individual tracks showing the progressive deposition of multiple layers with hatch spacing of 3 mm. (a)-(c) net increments on the top of each track, (d)-(f) progressive updates at the bottom of each track.
Fig. 13. Transverse sections of individual tracks showing the progressive deposition of multiple layers with hatch spacing of 4.2 mm. (a)-(c) net increments on the top of each track, (d)-(f) progressive updates at the bottom of each track.
Fig. 14. Comparison of the experimental and computed results for five-layer and six-track laser DED of Ti-6Al-4 V with different hatch spacings on the top surface. Laser power 1800 W, laser scanning speed 10 mm/s, powder feed rate 20 g/min. (a) and (d) hatch spacing 2 mm, (b) and (e) hatch spacing 3 mm, (c) and (f) hatch spacing 4.2 mm. (a)-(c) experimental results, (d)-(f) modeling results.
Fig. 15. Comparison of the experimental transverse sections for five-layer and six-track laser DED of Ti-6Al-4 V with different hatch spacings. The dashed lines delineate the profiles of the computational results. (a) hatch spacing of 2 mm, (b) hatch spacing of 3 mm, (c) hatch spacing of 4.2 mm.
Fig. 16. Profiles of the twenty-layer and six-track builds using various hatch spacings. (a) and (b) hatch spacing of 2 mm, (c) and (d) hatch spacing of 3 mm, (e) and (f) hatch spacing of 4.2 mm. (b), (d) and (f) show the dynamic mesh structure in the transverse sections at the mid-length of the builds.
[1] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[2] | S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, Addit. Manuf. 8 (2015) 36-62. |
[3] | H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De, T. DebRoy, Prog. Mater. Sci. (2020), 100703. |
[4] | T. DebRoy, T. Mukherjee, H.L. Wei, J.W. Elmer, J.O. Milewski, Nat. Rev. Mater. (2020) 1-21. |
[5] |
T. Guan, S. Chen, X. Chen, J. Liang, C. Liu, M. Wang, J. Mater. Sci. Technol. 35 (2019) 395-402.
DOI URL |
[6] |
G. Wang, J. Liang, Y. Zhou, T. Jin, X. Sun, Z. Hu, J. Mater. Sci. Technol. 33 (2017) 499-506.
DOI URL |
[7] | H.L. Wei, F.Q. Liu, W.H. Liao, T.T. Liu, Addit. Manuf. 34 (2020), 101219. |
[8] | S.J. Wolff, Z. Gan, S. Lin, J.L. Bennett, W. Yan, G. Hyatt, K.F. Ehmann, G.J. Wagner, W.K. Liu, J. Cao, Addit. Manuf. 27 (2019) 540-551. |
[9] |
G.L. Knapp, T. Mukherjee, J.S. Zuback, H.L. Wei, T.A. Palmer, A. De, T. DebRoy, Acta Mater. 135 (2017) 390-399.
DOI URL |
[10] | F. Wirth, K. Wegener, Addit. Manuf. 22 (2018) 307-319. |
[11] |
S. Li, H. Xiao, K. Liu, W. Xiao, Y. Li, X. Han, J. Mazumder, L. Song, Mater. Des. 119 (2017) 351-360.
DOI URL |
[12] |
H. Liu, J. Hao, Z. Han, G. Yu, X. He, H. Yang, J. Mater. Process. Technol. 232 (2016) 153-164.
DOI URL |
[13] |
Z. Gan, H. Liu, S. Li, X. He, G. Yu, Int. J. Heat Mass. Tran 111 (2017) 709-722.
DOI URL |
[14] | F.Q. Liu, L. Wei, S.Q. Shi, H.L. Wei, Addit. Manuf. 36 (2020), 101491. |
[15] |
H. Gu, L. Li, Int. J. Heat Mass. Tran 140 (2019) 51-65.
DOI URL |
[16] |
S. Wang, L. Zhu, J.Y.H. Fuh, H. Zhang, W. Yan, Opt. Laser. Eng. 127 (2020), 105950.
DOI URL |
[17] |
Y.S. Lee, D.F. Farson, Int. J. Adv. Manuf. Technol. 85 (2016) 1035-1044.
DOI URL |
[18] |
Z. Hu, X. Qin, T. Shao, H. Liu, Int. J. Adv. Manuf. Technol. 95 (2018) 2357-2368.
DOI URL |
[19] |
F. Spranger, B. Graf, M. Schuch, K. Hilgenberg, M. Rethmeier, J. Laser Appl. 30 (2018), 022001.
DOI URL |
[20] |
S. Liu, K.-M. Hong, C. Katinas, Y.C. Shin, J. Manuf. Process. 45 (2019) 579-587.
DOI URL |
[21] |
Y.C. Shin, N. Bailey, C. Katinas, W. Tan, Comput. Mech. 61 (2018) 617-636.
DOI URL |
[22] |
S. Wen, Y.C. Shin, J. Laser Appl. 23 (2011), 022003.
DOI URL |
[23] |
C. Zhang, L. Li, A. Deceuster, J. Mater. Process. Technol. 211 (2011) 1478-1487.
DOI URL |
[24] | N. Kang, X. Lin, M.E. Mansori, Q.Z. Wang, J.L. Lu, C. Coddet, W.D. Huang, Addit. Manuf. 31 (2020), 100911. |
[25] | Q. Wu, T. Mukherjee, C. Liu, J. Lu, T. DebRoy, Addit. Manuf. 29 (2019), 100808. |
[26] | W. Fan, H. Tan, X. Lin, W. Huang, Addit. Manuf. 35 (2020), 101267. |
[27] | J.C. Heigel, P. Michaleris, E.W. Reutzel, Addit. Manuf. 5 (2015) 9-19. |
[28] |
A. Ho, H. Zhao, J.W. Fellowes, F. Martina, A.E. Davis, P.B. Prangnell, Acta Mater. 166 (2019) 306-323.
DOI URL |
[29] |
T. Mukherjee, W. Zhang, T. DebRoy, Comp. Mater. Sci. 126 (2017) 360-372.
DOI URL |
[30] |
V. Manvatkar, A. De, T. DebRoy, J. Appl. Phys. 116 (2014), 124905.
DOI URL |
[31] |
Y. Huang, M.B. Khamesee, E. Toyserkani, Opt. Laser Technol. 109 (2019) 584-599.
DOI URL |
[32] |
Z. Hu, X. Qin, Y. Li, J. Yuan, Q. Wu, J. Intell. Manuf. 31 (2020) 1133-1147.
DOI URL |
[33] |
H.L. Wei, G.L. Knapp, T. Mukherjee, T. DebRoy, Addit. Manuf. 25 (2019) 448-459.
DOI |
[34] |
S. Geng, P. Jiang, X. Shao, L. Guo, X. Gao, J. Mater. Sci. Technol. 46 (2020) 50-63.
DOI URL |
[35] | H. Jasak, A. Jemcov, Z. Tukovic, OpenFOAM: A C++ library for complex physics simulations, International Workshop on Coupled Methods in Numerical Dynamics, Vol. 1000: IUC Dubrovnik Croatia (2007) 1-20. |
[36] | H.L. Wei, Y. Cao, W.H. Liao, T.T. Liu, Addit. Manuf. 34 (2020), 101221. |
[37] |
W. Fan, H. Tan, X. Lin, W. Huang, Mater. Des. 160 (2018) 1096-1105.
DOI URL |
[38] | K. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing Limited, England,2002. |
[39] | J. Yin, D. Wang, L. Yang, H. Wei, P. Dong, L. Ke, G. Wang, H. Zhu, X. Zeng, Addit. Manuf. 31 (2020), 100958. |
[40] |
S.A. Khairallah, A.A. Martin, J.R.I. Lee, G. Guss, N.P. Calta, J.A. Hammons, M.H. Nielsen, K. Chaput, E. Schwalbach, M.N. Shah, M.G. Chapman, T.M. Willey, A.M. Rubenchik, A.T. Anderson, Y.M. Wang, M.J. Matthews, W.E. King, Science 368 (2020) 660-665.
DOI URL |
[41] |
H. Yang, G. Jing, P. Gao, Z. Wang, X. Li, J. Mater. Sci. Technol. 51 (2020) 137-150.
DOI URL |
[42] |
L. Sun, X. Ren, J. He, Z. Zhang, J. Mater. Sci. Technol. 67 (2021) 11-22.
DOI URL |
[43] |
L. Johnson, M. Mahmoudi, B. Zhang, R. Seede, X. Huang, J.T. Maier, H.J. Maier, I. Karaman, A. Elwany, R. Arróyave, Acta Mater. 176 (2019) 199-210.
DOI URL |
[44] |
L. Aucott, H. Dong, W. Mirihanage, R. Atwood, A. Kidess, S. Gao, S. Wen, J. Marsden, S. Feng, M. Tong, T. Connolley, M. Drakopoulos, C.R. Kleijn, I.M. Richardson, D.J. Browne, R.H. Mathiesen, H.V. Atkinson, Nat. Commun. 9 (2018) 5414.
DOI URL PMID |
[1] | Ahmad Ostovari Moghaddam, Nataliya A. Shaburova, Marina N. Samodurova, Amin Abdollahzadeh, Evgeny A. Trofimov. Additive manufacturing of high entropy alloys: A practical review [J]. J. Mater. Sci. Technol., 2021, 77(0): 131-162. |
[2] | Chaoyue Chen, Yingchun Xie, Longtao Liu, Ruixin Zhao, Xiaoli Jin, Shanqing Li, Renzhong Huang, Jiang Wang, Hanlin Liao, Zhongming Ren. Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 72(0): 39-51. |
[3] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[4] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[5] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
[6] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[7] | Zihong Wang, Xin Lin, Yao Tang, Nan Kang, Xuehao Gao, Shuoqing Shi, Weidong Huang. Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: columnar-to-equiaxed transition and aging hardening behavior [J]. J. Mater. Sci. Technol., 2021, 69(0): 168-179. |
[8] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[9] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[10] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[11] | A.N.M. Tanvir, Md. R.U. Ahsan, Gijeong Seo, Brian Bates, Chanho Lee, Peter K. Liaw, Mark Noakes, Andrzej Nycz, Changwook Ji, Duck Bong Kim. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 67(0): 80-94. |
[12] | Y. Chew, Z.G. Zhu, F Weng, S.B. Gao, F.L. Ng, B.Y Lee, G.J. Bi. Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe49.5Mn30Co10Cr10C0.5 multicomponent alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 38-46. |
[13] | Li Sun, Xiaobo Ren, Jianying He, Zhiliang Zhang. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 67(0): 11-22. |
[14] | Wengang Zhai, Wei Zhou, Sharon Mui Ling Nai, Jun Wei. Characterization of nanoparticle mixed 316 L powder for additive manufacturing [J]. J. Mater. Sci. Technol., 2020, 47(0): 162-168. |
[15] | Kalaimani Markandan, Ruijing Lim, Pawan Kumar Kanaujia, Ian Seetoh, Muhammad Raziq bin Mohd Rosdi, Zhi Huey Tey, Jun Seng Goh, Yee Cheong Lam, Changquan Lai. Additive manufacturing of composite materials and functionally graded structures using selective heat melting technique [J]. J. Mater. Sci. Technol., 2020, 47(0): 243-252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||